Analyzing Multiple Rankings of Influential Nodes in Multiplex Networks

  • Sude TavassoliEmail author
  • Katharina A. Zweig
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 693)


In many networks, different centrality indices reveal conflicting rankings of the nodes. The problem is worsened, if the same nodes occur in different but related network layers, i.e., in multiplex networks. The main concern in the analysis of multiplex networks is maintaining the inherent nature of multiple layers in the explorations. Therefore, in this paper we discuss a method combining a fuzzy operator with a visualization, that allows the exploration of a node’s centrality with respect to different network processes on different layers of the same network simultaneously. Our empirical results indicate that an airport transportation network allows for a smaller number of different behaviors than social networks in a medium sized law firm and a large sized tweet dataset.


Betweenness Centrality Multi Criterion Decision Make Network Process Ranking Position Centrality Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abufouda, M., Zweig, K.A.: Interactions around social networks matter: Predicting the social network from associated interaction networks. In: Proceedings of the International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 142–145. IEEE/ACM (2014)Google Scholar
  2. 2.
    Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Physical Review E 89(3), 032,804 (2014)Google Scholar
  3. 3.
    Borgatti, S.: Centrality and network flow. Social Networks 27(1), 55 – 71 (2005)Google Scholar
  4. 4.
    Cardillo, A., Gómez-Gardenes, J., Zanin, M., Romance, M., Papo, D., del Pozo, F., Boccaletti, S.: Emergence of network features from multiplexity. Scientific reports 3 (2013)Google Scholar
  5. 5.
    De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor Scientific Reports 3, 2980 (2013)Google Scholar
  6. 6.
    De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., Arenas, A.: Ranking in interconnected multilayer networks reveals versatile nodes. Nature communications 6, 6868 (2015)Google Scholar
  7. 7.
    Filev, D., Yager, R.R.: Analytic properties of maximum entropy OWA operators. Information Sciences 85(1), 11–27 (1995)Google Scholar
  8. 8.
    Freeman, L.: Centrality in social network, conceptual clarification. Social Networks 1, 215–239 (1979)Google Scholar
  9. 9.
    Guimera, R., Mossa, S., Turtschi, A., Amaral, L.A.: The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences 102(22), 7794–7799 (2005)Google Scholar
  10. 10.
    Keeling, M.J., Rohani, P.: Modeling infectious diseases in humans and animals. Princeton University Press (2008)Google Scholar
  11. 11.
    Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nature physics 6(11), 888–893 (2010)Google Scholar
  12. 12.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. Journal of Complex Networks 2(3), 203–271 (2014)Google Scholar
  13. 13.
    Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Network Analysis - Methodological Foundations, chap. Centrality Indices, pp. 16–60. Springer Verlag (2005)Google Scholar
  14. 14.
    Koschützki, D., Lehmann, K.A., Tenfelde-Podehl, D., Zlotowski, O.: Network Analysis - Methodological Foundations, chap. Advanced Centrality Concepts, pp. 83–110. Springer Verlag (2005)Google Scholar
  15. 15.
    Lazega, E.: The collegial phenomenon: The social mechanisms of cooperation among peers in a corporate law partnership. Oxford University Press on Demand (2001)Google Scholar
  16. 16.
    Solé-Ribalta, A., De Domenico, M., Gómez, S., Arenas, A.: Centrality rankings in multiplex networks. In: Proceedings of the 2014 ACM Conference on Web Science, WebSci ’14, pp. 149–155. ACM, New York, NY, USA (2014)Google Scholar
  17. 17.
    Tavassoli, S., Zweig, K.A.: Analyzing the activity of a person in a chat by combining network analysis and fuzzy logic. In: Proceedings of the International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1565–1568. IEEE/ACM (2015)Google Scholar
  18. 18.
    Tavassoli, S., Zweig, K.A.: Most central or least central? how much modeling decisions influence a node’s centrality ranking in multiplex networks. arXiv preprint arXiv:1606.05468 (2016)
  19. 19.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics 18(1), 183–190 (1988)Google Scholar
  20. 20.
    Yager, R.R.: Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems 11(1), 49–73 (1996)Google Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Science DepartmentKaiserslautern University of TechnologyKaiserslauternGermany

Personalised recommendations