Advertisement

Chikungunya Virus and Zika Virus Expansion: An Imitation of Dengue Virus

  • I. W. Fong
Chapter
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

Dengue viruses are the most important arboviral pathogens in the world, which have adapted to human transmission and replication over several hundred years and were initially recognized to cause outbreaks of clinical disease in tropical and subtropical countries by Aedes aegypti mosquitoes. Subsequent global expansion of dengue infection outbreaks has occurred, with millions of cases yearly, probably from a combination of factors including proliferation of international travel and trade, possibly global climate changes, adaptation of the vectors to new environment, and emergence of a new mosquito vector, Aedes albopictus. Chikungunya virus, also transmitted by Aedes mosquitoes, causes a very similar clinical disease but with more prominent arthralgia or arthritis and was originally described in Africa in the 1960s. After a quiescent period of several decades, it reemerged in Africa in 2004 and rapidly spread across the Indian Ocean to involve Asian countries and parts of Europe. However, the past 2 years have seen the emergence of chikungunya virus in the western hemisphere with major outbreaks in the Caribbean and the Americas. Similar to dengue virus, chikungunya virus has adapted to Ae. albopictus mosquitoes which can transmit the disease. Although dengue infection is a more deadly disease especially in young children, chikungunya infection can cause prolonged severe disability and occasionally rare fatalities from encephalitis. No specific treatment is available for either diseases, but development of an effective vaccine for dengue infection is in progress. Until 2007, Zika virus [also transmitted by Aedes species] was associated with only sporadic mild infections in Africa and Asia. In 2007, Zika virus for the first time caused an outbreak beyond Africa and Asia to the Yap Island in the Federated States of Micronesia. Since then Zika virus has spread to French Polynesia, New Caledonia, Cook Islands, and Easter Island in the southeastern Pacific Ocean [Chile] in 2014 and by 2015 to Brazil. By January 2016, it became evident that Zika virus had caused an explosive outbreak in the Americas and the Caribbean with over 30 countries affected. On February 1, 2016, the World Health Organization declared Zika outbreak a global public health emergency. Zika virus infection is most commonly asymptomatic, and 20% of patients may develop a mild viral disease, but of major concern is the reported association of microcephaly in infected pregnant women in Brazil. This chapter explores the history, epidemiology, pathogenesis, clinical features, treatment, and prevention of these rapidly emerging zoonoses.

Keywords

Dengue viruses Dengue hemorrhagic fever Chikungunya virus Arthralgia Arthritis Aedes aegypti Aedes albopictus Zika virus Microcephaly 

References

  1. 1.
    Mousson L, Dauga C, Garrigues T, Shaffner F, Vazeille M, Failloux AB (2005) Phylogeography of Aedes [Stegomyia] aegypti [L.] and Aedes [Stegomyia] albopictus [Skuse] [Diptera: Culicidae] based on mitochondrial DNA variations. Genet Res 86:1–11PubMedCrossRefGoogle Scholar
  2. 2.
    Medlock JM, Hansford KM, Schaffner F et al (2012) A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Dis 12:435–447CrossRefGoogle Scholar
  3. 3.
    Hawley WA, Reiter P, Copeland RS, Pumpuni CB, Craig GB (1987) Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236:1114–1115PubMedCrossRefGoogle Scholar
  4. 4.
    World Health Organization (2012) Global strategy for dengue prevention and control: 2012–2020, pp. 1–43Google Scholar
  5. 5.
    Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53---1: clinical features. Trans R Soc Trop Med Hyg 49:28PubMedCrossRefGoogle Scholar
  6. 6.
    Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D (1999) Vectors of Chikungunya virus in Senegal: current data and transmission cycles. Am J Trop Med Hyg 60:281–286PubMedGoogle Scholar
  7. 7.
    Volk SM, Chen R, Tsetsarkin KA et al (2010) Genome-scale phylogenetic analyses of Chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J Virol 84:6497–6504PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Burt FJ, Ralph MS, Rulli NE, Mahalingam S, Heise MT (2012) Chikungunya: a re-emerging virus. Lancet 379:662–671PubMedCrossRefGoogle Scholar
  9. 9.
    Carey DE (1971) Chikungunya and dengue: a case of mistaken identity? J Hist Med Allied Sci 26:243–262PubMedCrossRefGoogle Scholar
  10. 10.
    Weaver SC, Lecuit M (2015) Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med 372:1231–1239PubMedCrossRefGoogle Scholar
  11. 11.
    Pastorino B, Muyembe-Tamfun JJ, Bessaud M et al (2004) Epidemic resurgence of Chikungunya virus in Democratic Republic of the Congo: identification of a new central Africa strain. J Med Virol 74:277–282PubMedCrossRefGoogle Scholar
  12. 12.
    Laras K, Sukri NC, Larasati RP et al (2005) Tracking the re-emergence of epidemic Chikungunya virus in Indonesia. Trans R Soc Trop Med Hyg 99:128–141PubMedCrossRefGoogle Scholar
  13. 13.
    Weaver SC, Osorio JE, Livengood JA, Chen R, Stinchcomb DT (2012) Chikungunya virus and prospects for a vaccine. Expert Rev Vaccines 11:1087–1101PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Schuffenecker I, Iteman I, Michault A et al (2006) Genome microevolution of Chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3:e263PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Vazeille M, Moutailler S, Coudrier D et al (2007) Two Chikungunya viruses from the outbreak of La Reunion [Indian Ocean] exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2:e1168PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Tsetsarkin KA, Weaver SC (2011) Sequential adaptive mutations enhance efficient vector switching by Chikungunya virus and its epidemic emergence. PLoS Pathog 7:e1002412PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tsetsarkin KA, Chen R, Leal G et al (2011) Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci U S A 108:7872–7877PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lanciotti RS, Kosoy OL, Laven JJ et al (2007) Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis 13:764–767PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Gaines J. Chikungunya update for clinicians. CDC Medscape, May 4, 2015. http://www.medscape.com/viewarticle/843623.
  20. 20.
    Leparc-Goffart I, Nourgairede A, Casadou S, Prat C, de Lamballerie X (2014) Chikungunya in the Americas. Lancet 383:514PubMedCrossRefGoogle Scholar
  21. 21.
    Centers for Disease Control and Prevention. Laboratory confirmed chikungunya virus cases reported to ArboNET by territory—United States, 2014. http://www.salud.gov.pr/Chikungunya/Pages/default.aspx Google Scholar
  22. 22.
    Vasilakis N, Weaver SC (2008) The history and evolution of human dengue emergence. Adv Virus Res 72:1–76PubMedCrossRefGoogle Scholar
  23. 23.
    Ashburn PM, Craig CF (1907) Experimental investigations regarding the etiology of dengue fever. J. Infect. Dis. 4:440–475CrossRefGoogle Scholar
  24. 24.
    Siler JF, Hall MW, Hitchens AP (1926) Dengue: Its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity and prevention. Philipp J Sci 29:1–252Google Scholar
  25. 25.
    Simmonds JS, St. John JH, Reynolds FH (1931) Experimental studies of dengue. Philipp J Sci 44:1–252Google Scholar
  26. 26.
    Rudnick A, Marchette NJ, Garcia R (1967) Possible jungle dengue—recent studies and hypotheses. Jpn J Med Sci Biol 20:69–74PubMedGoogle Scholar
  27. 27.
    Smith CE (1956) The history of dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti. J Trop Med Hyg 59:243–251PubMedGoogle Scholar
  28. 28.
    Dick GW, Kitchen SF, Haddow AJ (1952) Zika virus. 1. Isolation and serological specificity. Trans R Soc Trop Med Hyg 46:509–520PubMedCrossRefGoogle Scholar
  29. 29.
    Macnamara FN (1954) Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 48:139–145PubMedCrossRefGoogle Scholar
  30. 30.
    Moore DL, Causey OR, Carey DE et al (1975) Arthropod-borne viral infections of man in Nigeria, 1964–1970. Ann Trop Med Parasitol 69:49–64PubMedCrossRefGoogle Scholar
  31. 31.
    Hayes EB (2009) Zika virus outside Africa. Emerg Infect Dis 15:1347–1350PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Marchette NJ, Garcia R, Rudnick A (1969) Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. AmJTrop Med Hyg 18:411–415Google Scholar
  33. 33.
    Lanciotti RS, Kosoy OL, Laven JJ et al (2008) Genetic and serological properties of Zika virus associated with an epidemic. Yap State, Micronesia, 2007. Emerg Infect Dis 14:1232–1239PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Thiboutot MM, Kannan S, Kawalekar OU et al (2010) Chikungunya: a potential emerging epidemic? PLoS Neglected Trop Dis 4:e623CrossRefGoogle Scholar
  35. 35.
    Cherian SS, Walimbe AM, Jadhav SM et al (2009) Evolutionary rates and timescale comparison of Chikungunya viruses inferred from the whole genome/E1 gene with special reference to the 2005–07 outbreak in the Indian subcontinent. Infect Genet Evol 9:16–23PubMedCrossRefGoogle Scholar
  36. 36.
    Lozier M et al (2016) Incidence of Zika virus disease by age and sex - Puerto Rico, November 1, 2015-October 20, 2016. MMWR Morb Mortal Wkly Rep 65(44):1219–1223PubMedCrossRefGoogle Scholar
  37. 37.
    Normile D (2013) Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science 342:415PubMedCrossRefGoogle Scholar
  38. 38.
    Rodenhuis-Zybert IA, Wishut J, Smit JM (2012) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67:2773–2786CrossRefGoogle Scholar
  39. 39.
    Holmes E, Twiddy S (2003) The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 3:19–28PubMedCrossRefGoogle Scholar
  40. 40.
    Fredericks AC, Fernandez-Sesma A (2014) The burden of dengue and Chikungunya worldwide: implications for the southern United States and California. Annals Glob Hlth 80:466–475CrossRefGoogle Scholar
  41. 41.
    World Health Organization (2011) Comprehensive guidelines for prevention and control of dengue and dengue hemorrhagic fever. WHO Regional Office for South-East Asia, New DelhiGoogle Scholar
  42. 42.
    Haddow AD, Schuh AJ, Yasuda CY et al (2012) Genetic characterization of Zika virus strain: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6:e1477PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Enfissi A, Codrington J, Roosblad J, Kazanji M, Rousset D (2016) Zika virus genome from the Americas. Lancet 387:227–228PubMedCrossRefGoogle Scholar
  44. 44.
    Gatherer D, Kohl A (2015) Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol 97(2):269–273PubMedCrossRefGoogle Scholar
  45. 45.
    Boorman JP, Poprterfield JS (1956) A simple technique for infection of mosquitoes with viruses: transmission of Zika virus. Trans R Soc Trop Med Hyg 50:238–242PubMedCrossRefGoogle Scholar
  46. 46.
    Besnard M, Lastere S, Teissier A, Cao-Lormeau VM, Musso D (2014) Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Eur Surveill 19:20751CrossRefGoogle Scholar
  47. 47.
    Oliveira Melo AS, Malinger G, Ximenes R, Szejnfeld PO, Alves Sampaio S, Bispo De Filippis AM (2016) Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound Obstet Gynecol 47:6–7PubMedCrossRefGoogle Scholar
  48. 48.
    Musso D, Nhan T, Robin E et al (2014) Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia. November 2013 to February 2014. Eur Surveill 19:20751CrossRefGoogle Scholar
  49. 49.
    Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lorrmeau VM (2015) Potential sexual transmission of Zika virus. Emerg Infect Dis 21:359–361PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Hills SL, Russell K, Hennessey M, Williams C, Oster AM, Fischer M, Mead P (2016) Transmission of Zika virus through sexual contact with travelers to areas to areas of ongoing transmission continental United States, 2016. MMWR Morb Mortal Wkly Rep 65:215–216PubMedCrossRefGoogle Scholar
  51. 51.
    Venturi G, Zammarchi L, Fortuna C et al (2016) An autochthonous case of Zika virus due to possible sexual transmission, Florence, Italy, 2014. Euro. Surveill. 21(8). doi:  10.2807/1560-7917
  52. 52.
    Atkinson B, Hearn P, Afrough B et al (2016) Detection of Zika virus in semen. Emerg Infect Dis 22:940PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Mansuy JM, Dutertre M, Mengelle C et al (2016) Zika virus: high infectious viral load in semen, a new sexually transmitted pathogen? Lancet Infect Dis 16:405PubMedCrossRefGoogle Scholar
  54. 54.
    Brent C et al (2016) Preliminary findings from an investigation of Zika virus infection of a patient with no known risk factors – Utah. MMWR Morb Mortal Wkly Rep 65(36):981–982PubMedCrossRefGoogle Scholar
  55. 55.
    Mammen MP, Pimgate C, Koenraadt CJM et al (2008) Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med 5:e205PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Randolph SE, Rogers DJ (2010) The arrival, establishment and spread of exotic diseases: patterns and prediction. Nat Rev Microbiol 8:361–371PubMedCrossRefGoogle Scholar
  57. 57.
    Hanson S, Craig GB (1994) Cold acclimation, diapause, and geographic origin affect cold hardiness in eggs of Aedes albopictus [Diptera: Culicidae]. J Med Entomol 31:192–201PubMedCrossRefGoogle Scholar
  58. 58.
    Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A (2013) Climate change and range expansion of the Asian tiger mosquito [Aedes albopictus] in northeastern USA: implication for public health practitioners. PLoS One 8:e60874PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Schaffner F, Medlock JM, Van Bortel W (2013) Public health significance of invasive mosquitoes in Europe. Clin Microbiol Infect 19:685–692PubMedCrossRefGoogle Scholar
  60. 60.
    Brady OJ, Golding N, Pigott DM et al (2014) Global temperature constraints on Aedes aegypti and A. albopictus persistence and competence for dengue virus transmission. Parasit Vectors 7:338PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227PubMedCrossRefGoogle Scholar
  62. 62.
    Whitehorn J, Kien DTH, Nguyen NM et al (2015) Comparative susceptibility of Aedes albopictus and Aedes aegypti to dengue virus infection after feeding on blood of viremic humans: implication for public health. J. Infect. Dis. 212:1182–1190PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Diagne CT, Diallo D, Faye O et al (2015) Potential of selected Senegalese Aedes spp. mosquitoes [Diptera: Culicidae] to transmit Zika virus. BMC Infect Dis 15:492PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Wong PS, Li MZ, Chong CS, Ng LC, Tan CH (2013) Aedes [Stegomyia] albopictus: a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis 7:e2348PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Grad G, Caron M, Mombo IM et al (2014) Zika virus in Gabon [Central Africa]—2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis 8:e2681CrossRefGoogle Scholar
  66. 66.
    Sourisseau M, Schilte C, Casartelli N et al (2007) Characterization of reemerging Chikungunya virus. PLoS Pathog 3:e89PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Ng LF, Chow A, Sun YJ et al (2009) IL-1 beta, IL-6, and RANTES as biomarkers of Chikungunya severity. PLoS One 4:4261CrossRefGoogle Scholar
  68. 68.
    Ozden S, Huerre M, Riviere JP et al (2007) Human muscle satellite cells as targets of Chikungunya virus infection. PLoS One 2:527CrossRefGoogle Scholar
  69. 69.
    Gardner J, Anraku I, Le TT et al (2010) Chikungunya virus arthritis in adult wild-type mice. J Virol 84:8021–8032PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Labadie K, Larcher T, Joibert C et al (2010) Chikungunya disease in nonhuman primates involve long–term viral persistence in macrophages. J Clin Invest 120:894–906PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Couderc T, Chretien F, Schilte C et al (2008) A mouse model for Chikungunya: young age and inefficient type-1 interferon signaling are risk factors for severe disease. PLoS Pathog 4:e29PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Das T, Jaffer-Bandjee MC, Hoarau JJ et al (2010) Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol 91:121–129PubMedCrossRefGoogle Scholar
  73. 73.
    Schwartz O, Albert ML (2010) Biology and pathogenesis of Chikungunya virus. Nat Rev Microbiol 8:491–500PubMedCrossRefGoogle Scholar
  74. 74.
    Schilte C, Couderc T, Chretien F et al (2010) Type 1 IFN controls Chikungunya virus via its action on nonhematopoietic cells. J Exp Med 207:429–442PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Couderc T, Khandouri N, Grandadam M et al (2009) Prophylaxis and therapy for Chikungunya virus infection. J Infect Dis 200:516–523PubMedCrossRefGoogle Scholar
  76. 76.
    Lim ML, Mateo L, Gardner J, Suhrbier A (1998) Alphavirus-specific cytotoxic T lymphocytes recognize a cross-reactive epitope from the capsid protein and can eliminate virus from persistently infected macrophages. J Virol 72:5146–5153Google Scholar
  77. 77.
    Maek-A-Nantawat W, Silachamroon U (2009) Presence of autoimmune antibody in Chikungunya infection. Case Rep Med 2009:840183PubMedCentralPubMedGoogle Scholar
  78. 78.
    Malvy D, Ezzedine K, Mamani-Matsuda M et al (2009) Destructive arthritis in a patient with persistent specific IgM antibodies. BMC Infect Dis 9:200–207PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Hoarau JJ, Jaffer-Bandjee MC, Kreijbich TP et al (2010) Persistent chronic inflammation by Chikungunya arthrogenic alphavirus in spite of a robust immune response. J Immunol 184:5914–5927PubMedCrossRefGoogle Scholar
  80. 80.
    Simmons CP, Farrar JJ, van Vinh CN, Wills B (2012) Dengue. N Engl J Med 366:1423–1432PubMedCrossRefGoogle Scholar
  81. 81.
    Halstead SB (1989) Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis 11(Suppl. 4):S830–S839PubMedCrossRefGoogle Scholar
  82. 82.
    Balmaseda A, Standish K, Mercado JC et al (2010) Trends in patterns of disease transmission over 4 years in a pediatric cohort study in Nicaragua. J. Infect. Dis. 201:5–14PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Montoya M, Gresh L, Mercado JC et al (2013) Symptomatic versus inapparent outcome in repeat dengue virus infection is influenced by the time interval between infections and study year. PLoS Negl Trop Dis 7:e2357PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Guzman MG, Alvarez M, Halstead SB (2013) Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 158:1445–1459PubMedCrossRefGoogle Scholar
  85. 85.
    Guzman MG, Kouri G, Bravo J, Valdes L, Vazquez S, Halstead SB (2002) Effect of age on outcome of secondary dengue 2 infections. Int J Infect Dis 6:118–124PubMedCrossRefGoogle Scholar
  86. 86.
    Martina BE, Koraka P, Osterhaus AD (2009) Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22:564–581PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Huy NT, Giang TV, Thuy DHD, Kikuchi M, Hien TT, Zamora J, Hirayama K (2013) Factors associated with dengue shock syndrome: a systematic review and meta-analysis. PLoS Negl Trop Dis 7:e2412PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Martina BEE (2014) Dengue pathogenesis: a disease driven by host response. Sci Prog 97:197–214PubMedCrossRefGoogle Scholar
  89. 89.
    Lim DS, Yawata N, Selva KJ et al (2014) The combination of type 1 IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue. J Immunol 193:5065–5075PubMedCrossRefGoogle Scholar
  90. 90.
    Hottz ED, Medeiros-de-Moraes IM, Vieira-de-Abreu A et al (2014) Platelet activation and apoptosis modulate monocyte inflammatory response in dengue. J Immunol 193:1864–1872PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467PubMedCrossRefGoogle Scholar
  92. 92.
    Rothman AL (2011) Immunity to dengue virus: a tale of original antigenic sin and tropical storms. Nat Rev Immunol 11:532–543PubMedCrossRefGoogle Scholar
  93. 93.
    Hamel R, Dejarnac O, Wichit S et al (2015) Biology of Zika virus infection in human skin cells. J Virol 21:84–86Google Scholar
  94. 94.
    Blazquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martin-Acebes MA (2014) Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol 5:266PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Tappe D, Perez-Giron JV, Zammarchi L et al (24 December 2015) Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase. Med Microbiol Immunol. doi: 10.1007/s00430-015-0445-7 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Grant A, Ponia SS, Tripathi S et al (2016) Zika virus targets human STAT2 to inhibit type 1 interferon signaling. Cell Host Microbe 19:882–890PubMedCrossRefGoogle Scholar
  97. 97.
    Miner JJ, Cao B, Govero J et al (2016) Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165:1081–1091PubMedCrossRefGoogle Scholar
  98. 98.
    Cugola FR, Fernandes IR, Russo FB et al (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534:267–271PubMedCentralPubMedGoogle Scholar
  99. 99.
    Li C, Xu D, Ye Q et al (2016) Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19:120–126PubMedCrossRefGoogle Scholar
  100. 100.
    Wu KY, Zuo GL, Li XF et al (2016) Vertical transmission of Zika virus targeting the radial cells affects cortex development of offspring mice. Cell Res 26:645–654PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Mysorekar IU, Diamond MS (2016) Modeling Zika virus in pregnancy. N Engl J Med 375:481–484PubMedCrossRefGoogle Scholar
  102. 102.
    Suy A et al (2016) Prolonged Zika virus Viremia during pregnancy. N Engl J Med 375:2611–2613PubMedCrossRefGoogle Scholar
  103. 103.
    Musso D, Nhan T, Robin E et al (2014) Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia. November 2013 to February 2014. Eur Surveill 19:20761CrossRefGoogle Scholar
  104. 104.
    Centers for Disease Control and Prevention (2016) Interim guidance for interpretation of Zika virus antibody test results. MMWR 65:475Google Scholar
  105. 105.
    Staikowsky F, Talarmin F, Grivard P et al (2009) Prospective study of Chikungunya virus acute infection in the Island La Reunion during the 2005-2006 outbreak. PLoS One 4:e7603PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Gerardin P, Barau G, Michault A et al (2008) Multidisciplinary prospective study of mother-to-child Chikungunya virus infections on the island of La Reunion. PLoS Med 5:e60PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Sissoko D, Malvy D, Ezzedine K et al (2009) Post-epidemic Chikungunya disease on Reunion Island: course of rheumatic manifestations and associated factors over a 15 month period. PLoS Negl Trop Dis 3:e389PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Brighton SW, Prozesky OW, de la Harpe AL (1983) Chikungunya virus infection. A retrospective study of 107 cases. S Afr Med J 63:313–315PubMedGoogle Scholar
  109. 109.
    Schilte C, Staikowsky F, Couderc T et al (2013) Chikungunya virus associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl Trop Dis 7:e2137PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Manimunda SP, Vijayachari P, Uppoor R et al (2010) Clinical progression of Chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed on imaging. Trans R Soc Trop Med Hyg 104:392–399PubMedCrossRefGoogle Scholar
  111. 111.
    Ganu MA, Ganu AS (2011) Post-chikungunya chronic arthritis our experience with DMARDs over two year follow up. J Assoc Physicians India 59:83–86PubMedGoogle Scholar
  112. 112.
    Sun J, Luo S, Lin J et al (2012) Inapparent infection during an outbreak of dengue fever in Southeastern China. Viral Immunol 25:456–460PubMedCrossRefGoogle Scholar
  113. 113.
    Malhotra HS, Garg RK (2014) Dengue-associated hypokalemic paralysis: causal or incident? J Neurol Sci 344:238CrossRefGoogle Scholar
  114. 114.
    Huang SY, Lee IK, Liu JW, Kung CT, Wang L (2015) Clinical features and risk factors for rhabdomyolysis among adult patients with dengue virus infection. AmJTrop Med Hyg 92:75–81CrossRefGoogle Scholar
  115. 115.
    Lizarraga KJ, Nayer A (2014) Dengue-associated kidney disease. J Nephropathol 3:57–62PubMedGoogle Scholar
  116. 116.
    Mena Lora AJ, Fernandez J, Morales A, Soto Y, Feris-Iglesias J, Brito MO (2014) Disease severity and mortality caused by dengue in a Dominican pediatric population. AmJTrop Med Hyg 90:169–172CrossRefGoogle Scholar
  117. 117.
    Nascimento E, Hottz ED, Garcia-Bates TM, Bozza F, Marques ET Jr, Barratt-Boyes SM (2014) Emerging concepts in dengue pathogenesis: interplay between plasmablasts, platelets, and complement in triggering vasculopathy. Crit Rev Immunol 34:227–240PubMedCrossRefGoogle Scholar
  118. 118.
    Hostick O, Martiez E, Guzman MG, Martin JL, Ranzinger SR (2015) WHO dengue case classification in 2009 and its usefulness in practice: an expert consensus in the Americas. Pathog Glob Health 109:19–25CrossRefGoogle Scholar
  119. 119.
    Verma R, Sahu R, Holla V (2014) Neurological manifestations of dengue: a review. J Neurol Sci 346:26–34PubMedCrossRefGoogle Scholar
  120. 120.
    Sahu R, Verma R, Jain A et al (2014) Neurological complications in dengue virus infection: a prospective cohort study. Neurology 83:1601–1609PubMedCrossRefGoogle Scholar
  121. 121.
    Dussart P, Petit L, Labeau B et al (2008) Evaluation of two new commercial tests for the diagnosis of acute dengue fever virus infection using NS1 antigen detection in human serum. PLoS Negl Trop Dis 2:e280PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Guzman MG, Jaenisch T, Gaczkowski R et al (2010) Multi-country evaluation of the sensitivity and specificity of two commercially-available NS1 ELISA assays for dengue diagnosis. PLoS Negl Trop Dis 4:e811PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Fry SR, Meyer M, Semple MG et al (2011) The diagnostic sensitivity of dengue rapid test is significantly enhanced by using a combined antigen and antibody testing approach. PLoS Negl Trop Dis 5:e1199PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Kaur P, Kaur G (2014) Transfusion support in patients with dengue fever. Int J Appl Basic Med Res 4(Suppl. 1):S8–S12PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Duffy MR, Chen TH, Hancock WT et al (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2542PubMedCrossRefGoogle Scholar
  126. 126.
    Cao-Lormeau VM, Musso D (2014) Emerging arbovirus in the Pacific. Lancet 384:1571–1572PubMedCrossRefGoogle Scholar
  127. 127.
    Roth A, Mercier A, Lepers C et al (2014) Concurrent outbreaks of dengue, Chikungunya and Zika virus infections—an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012-2014. Eur Surveill 19(41). pii: 20929Google Scholar
  128. 128.
    European Centre for Disease Prevention and Control (2015) Rapid risk assessment: Zika virus epidemic in the Americas: potential association with microcephaly and Guillian-Barre syndrome. 10 December 2015. ECDC, StockholmGoogle Scholar
  129. 129.
    Vogel G (2016) A race to explain Brazil’s spike in birth defects. Evidence points toward the fast-spreading Zika virus as the cause of microcephaly. Science 351:110–111PubMedCrossRefGoogle Scholar
  130. 130.
    Fleming-Dutra KE, Nelson JM, Fischer M, Erin Staples J, Karwowski MP, Mead P, Villanueva J, Renquist CM, Minta AA, Jamieson DJ, Honein MA, Moore CA, Rasmussen SA (2016) Update interim guidelines for health care providers caring for infants and children with possible Zika virus infection United States, February 2016. MMWR Morb Mortal Wkly Rep 65:182–187PubMedCrossRefGoogle Scholar
  131. 131.
    Moore CA, Weaver DD, Bull MJ (1990) Fetal brain disruption sequence. J Pediatr 116:383–386PubMedCrossRefGoogle Scholar
  132. 132.
    Petersen LR, Jamieson D, Powers AM, Honein MA (2016) Zika virus. N Engl J Med 373:1552–1563Google Scholar
  133. 133.
    Brasil P, Pereira JP Jr, Raja Gabaglia C et al (2016) Zika virus infection in pregnant women in Rio de Janeiro preliminary report. N Engl J Med. doi: 10.1056/NEJMoa1602412 PubMedGoogle Scholar
  134. 134.
    Cauchemez S, Besnard M, Bompard P, et al. Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study. Lancet 2016; Online. http//dx.doi.org/10.1016/S0140-6736[16]00651-6.Google Scholar
  135. 135.
    Carteaux G, Maquart M, Bedet A et al (2016) Zika virus associated with meningoencephalitis. N Engl J Med 374:1595–1596PubMedCrossRefGoogle Scholar
  136. 136.
    Mecharles S, Herrmann C, Poullain P et al (2016) Acute myelitis due to Zika virus infection. Lancet 387:1481PubMedCrossRefGoogle Scholar
  137. 137.
    Centers for Disease Control and Prevention (2016) Interim guidelines for the evaluation and testing of infants with possible congenital Zika virus infection United States. MMWR 65(3):63–67Google Scholar
  138. 138.
    Faye O, Faye O, Diallo M, Weidmann M, Sall AA (2013) Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J 10:311PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Gourinat AC, O’Connor O, Calvert E, Goarant C, Dupont-Rouzeyrol M (2015) Detection of Zika virus in urine. Emerg Infect Dis 21:84–86PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Musso D, Roche C, Nhan TX, Teissier A, Cao-Lormeau VM (2015) Detection of Zika virus in saliva. J Clin Virol 68:53–55PubMedCrossRefGoogle Scholar
  141. 141.
    Oehler E, Watrin L, Larre P, et al. Zika virus infection complicated by Guillian-Barre syndrome case report, French Polynesia, December 2013. Euro. Surveill. 2014; 19: pii 20720Google Scholar
  142. 142.
    Ventura CV, Maia M, Ventura BV et al (2016) Ophthalmological findings in infants with microcephaly and presumable intra-uterine Zika virus infection. Arq Bras Oftalmol 79:1–3PubMedGoogle Scholar
  143. 143.
    Franca GVA, Schuler-Faccini L, Oliveira WK et al (2016) Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet 388:891–897PubMedCrossRefGoogle Scholar
  144. 144.
    Martines RB, Bhatnagar J, de Oliveira Ramos AM et al (2016) Pathology of congenital Zika syndrome in Brazil: a case series. Lancet 388:898–904PubMedCrossRefGoogle Scholar
  145. 145.
    Briolant S, Garin D, Scaramizzino N, Jouan A, Crance JM (2004) In vitro inhibition of Chikungunya and Semliki Forest viruses replication by antiviral compounds: synergistic effect of interferon-alpha and ribavirin combination. Antivir Res 61:111–117PubMedCrossRefGoogle Scholar
  146. 146.
    Brighton SW (1984) Chloroquine phosphate treatment of chronic Chikungunya arthritis. An open pilot study. S Afr Med J 66:217–218PubMedGoogle Scholar
  147. 147.
    de Lamballerie X, Boisson V, Reynier JC et al (2008) On Chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis 8:837–839PubMedCrossRefGoogle Scholar
  148. 148.
    Chang LJ, Dowd KA, Mendoza FH et al (2014) Safety and tolerability of Chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet 384:2046–2052PubMedCrossRefGoogle Scholar
  149. 149.
    Capeding MR, Tran NH, Hadinegoro SRS et al (2014) Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomized, observer-masked, placebo-controlled trial. Lancet 384:1358–1365PubMedCrossRefGoogle Scholar
  150. 150.
    Villar L, Dayan GH, Arredondo-Garcia JL et al (2015) Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med 372:113–123PubMedCrossRefGoogle Scholar
  151. 151.
    Hadinegoro SR, Arrendondo-Garcia JL, Capeding MR et al (2015) Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373:1195–1206PubMedCrossRefGoogle Scholar
  152. 152.
    Jelitha R, Nirmalatiban P, Nyanamalar S, Cabriz MG (2015) Descriptive review of safety, reactivity and immunogenicity of dengue vaccine clinical trials, 2003-2013. Med J Malays 70:67–75Google Scholar
  153. 153.
    Tricou V, Minh NN, Van TP et al (2010) A randomized trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 4:e785PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Larocca RA, Abbink P, Peron JP et al (2016) Vaccine protection against Zika virus from Brazil. Nature. doi: 10.1038/nature18952 PubMedCentralPubMedGoogle Scholar
  155. 155.
    Abbink P, Larocca RA, De La Barrera RA et al (2016) Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science. doi: 10.1126/science.aah6157 Google Scholar
  156. 156.
    Wise de Valdez MR, Nimmo D, Betz J et al (2011) Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci U S A 108:4772–4775PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Turner JD, Langley KL, Johnston K et al (2009) Wolbachia lipoprotein stimulates innate and adaptive immunity through Toll-like receptors 2 and 6 induce disease manifestations of filariasis. J Biol Chem 284:22364–22368PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278PubMedCrossRefGoogle Scholar
  159. 159.
    Walker T, Johnson PH, Moreira LA et al (2011) The Mel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–453PubMedCrossRefGoogle Scholar
  160. 160.
    Hoffmann AA, Montgomery BL, Popovici J et al (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457PubMedCrossRefGoogle Scholar
  161. 161.
    Callaway E (2016) Rio fights Zika with biggest release yet of bacteria-infected mosquitoes. Nature 539:17–18PubMedCrossRefGoogle Scholar
  162. 162.
    Blaney JE Jr, Durbin AP, Murphy BR, Whitehead SS (2006) Development of a live attenuated vaccine using reverse genetics. Viral Immunol 19:19–32CrossRefGoogle Scholar
  163. 163.
    Kirkpatrick BD, Durban AP, Pierce KK et al (2015) Robust and balance immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naïve adults. J. Infect. Dis. 212:702–710PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Roy C, Adams AP, Wang E et al (2014) Chikungunya vaccine candidate is highly attenuated and protects nonhuman primates against telemetrically monitored disease following a single dose. J. Infect. Dis. 209:1891–1899PubMedCentralPubMedCrossRefGoogle Scholar
  165. 165.
    Tretyakova I, Hearn J, Wang E, Weaver S, Pushko P (2014) DNA vaccine initiates replication of live attenuated Chikungunya virus in vitro and elicits protective immune response in mice. J. Infect. Dis. 209:1882–1890PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    Simanjuntak Y, Liang JJ, Lee YL, Lin YL (2015) Repurposing of prochlorperazine for use against dengue virus infection. J. Infect. Dis. 211:394–404PubMedCrossRefGoogle Scholar
  167. 167.
    Vogel G (2013) Lab dishes up mini-brains. Science 341:946–947PubMedCrossRefGoogle Scholar
  168. 168.
    Lorenzi OD, Major C, Acevedo V et al (2016) Reduced incidence of Chikungunya virus infection in communities with ongoing Aedes aegypti Mosquito Trap Intervention Studies—Salinas and Guayama, Puerto Rico, November 2015-februaty 2016. MMWR Morb Mortal Wkly Rep 65. doi: 10.15585/mmwr.mm6518e3
  169. 169.
    Reikind MH, Wund MA (2009) Experimental assessment of the impact of northern long-eared bats on ovipositing Culex [Diptera: Culicidae] mosquitoes. J Med Entomol 46:1037–1044CrossRefGoogle Scholar
  170. 170.
    Honein MA et al (2017) Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA 317(1):59–68. doi: 10.1001/jama.2016.19006 PubMedCrossRefGoogle Scholar
  171. 171.
    Brasil P et al (2016) Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med 355:2321–2334CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • I. W. Fong
    • 1
  1. 1.University of TorontoTorontoCanada

Personalised recommendations