Advertisement

Immersive Industrial Process Environment from a P&ID Diagram

  • Víctor H. Andaluz
  • Washington X. Quevedo
  • Fernando A. Chicaiza
  • Catherine Gálvez
  • Gabriel Corrales
  • Jorge S. Sánchez
  • Edwin P. Pruna
  • Oscar Arteaga
  • Fabián A. Álvarez
  • Galo Ávila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10072)

Abstract

This work presents the development of an interactive and intuitive three-dimensional Human Machine Interface, based on Virtual Reality, which emulates the operation of an industrial plant and contains a two-dimensional Human Machine Interface for control and monitoring a process of one or more variables, applying the concept of user immersion in the virtual environment. The application is performed by using Computer Aided Design software and a graphics engine. Furthermore, experimental results are presented and discussed to validate the proposed system applied to a real process of a plant.

Keywords

Industrial virtual interface Unity Flow control 

Notes

Acknowledgment

The authors would like to thanks to the Consorcio Ecuatoriano para el Desarrollo de Internet Avanzado -CEDIA- for financing the project “Tele-Operación Bilateral Cooperativo de Múltiples Manipuladores Móviles – CEPRAIX-2015-05”, and others Institutions like the Universidad de las Fuerzas Armadas ESPE and the Universidad Técnica de Ambato for the technical and human support to develop this paper.

References

  1. 1.
    Yin, S., Ding, S.X., Xie, X., Luo, H.: A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 61(11), 6418–6428 (2014)CrossRefGoogle Scholar
  2. 2.
    Hou, L., Bergmann, N.W.: Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis. IEEE Trans. Instrum. Meas. 61(10), 2787–2798 (2012)CrossRefGoogle Scholar
  3. 3.
    Skripcak, T., Tanuska, P.: Utilisation of on-line machine learning for SCADA system alarms forecasting. In: Science and Information Conference (SAI), London, pp. 477–484 (2013)Google Scholar
  4. 4.
    Venkatasreehari, R., Chakravarthi, M.K.: Industrial pollution monitoring GUI system using internet, LabVIEW AND GSM. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, pp. 787–791 (2014)Google Scholar
  5. 5.
    Truong, N.V., Vu, D.L.: Remote monitoring and control of industrial process via wireless network and Android platform. In: 2012 International Conference on Control, Automation and Information Sciences (ICCAIS), Ho Chi Minh City, pp. 340–343 (2012)Google Scholar
  6. 6.
    Stenumgaard, P., Chilo, J., Ferrer-Coll, J., Angskog, P.: Challenges and conditions for wireless machine-to-machine communications in industrial environments. IEEE Commun. Mag. 51(6), 187–192 (2013)CrossRefGoogle Scholar
  7. 7.
    Lee, A.N., Martinez Lastra, J.L.: Enhancement of industrial monitoring systems by utilizing context awareness. In: 2013 IEEE International Multi-disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), San Diego, CA, pp. 277–284 (2013)Google Scholar
  8. 8.
    Gaj, P., Jasperneite, J., Felser, M.: Computer communication within industrial distributed environment—a survey. IEEE Trans. Ind. Inf. 9(1), 182–189 (2013)CrossRefGoogle Scholar
  9. 9.
    Georgescu, V.C.: Optimized SCADA systems for electrical substations. In: 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, pp. 1–4 (2013)Google Scholar
  10. 10.
    Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in the industry 4.0 era. In: 2014 12th IEEE International Conference on Industrial Informatics (INDIN), Porto Alegre, pp. 289–294 (2014)Google Scholar
  11. 11.
    Lima, J., Moreira, J.F.P., Sousa, R.M.: Remote supervision of production processes in the food industry. In: 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, pp. 1123–1127 (2015)Google Scholar
  12. 12.
    Jamro, M., Trybus, B.: IEC 61131–3 programmable human machine interfaces for control devices. Im: 2013 6th International Conference on Human System Interactions (HSI), Sopot, pp. 48–55 (2013)Google Scholar
  13. 13.
    Posada-Carlos-Toro, J., Barandiaran, I., Oyarzun, D., Stricker, D., de Amicis, R., Pinto, E.B., Eisert, P., Döllner, J., Vallarino, I.: Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE Comput. Graph. Appl. 35(2), 26–40 (2015)CrossRefGoogle Scholar
  14. 14.
    Xiaodong, Z., Jie, Z., Ke, L.: Design and implementation of control system for beer fermentation process based on SIMATIC PLC. In: The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, pp. 5653–5656 (2015)Google Scholar
  15. 15.
    Kumar, B., Dewal, M.L., Mukherjee, S.: Control and monitoring of MSF-RO hybrid desalination process. In: 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), Jabalpur, pp. 1–5 (2013)Google Scholar
  16. 16.
    Vidarte, J.D.T., Londoño, H.F.F., Vidarte, J.D.T.: A substation automation system for the ECOPETROL power plants at Cantagallo and Yariguí. In: Robotics Symposium, 2011 IEEE IX Latin American and IEEE Colombian Conference on Automatic Control and Industry Applications (LARC), Bogota, pp. 1–5 (2011)Google Scholar
  17. 17.
    Cristian, B., Constantin, O., Zoltan, E., Adina, P.V., Florica, P.: The control of an industrial process with PLC. In: 2014 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, pp. 1–4 (2014)Google Scholar
  18. 18.
    Webel, S., Bockholt, U., Engelke, T., Gavish, N., Olbric, M., Preusche. C.: An augmented reality training platform for assembly and maintenance skills. In: Fraunhofer IGD, Germany, Ort Braude College, Israel. German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Germany. Available online 1 November 2012Google Scholar
  19. 19.
    Cheng, T., Teizer, J.: Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive N.W., Atlanta, GA 30332–0355, United States Accepted 16 October 2012, Available online 13 November 2012Google Scholar
  20. 20.
    Wang, X., Kim, M.J., Love, P.E.D., Kang, S.-C.: Augmented Reality in built environment: Classification and implications for future research, School of Built Environment, Curtin University, Australia Department of Housing and Interior Design, Kyung Hee University, Republic of Korea Department of Civil Engineering, National Taiwan University, Taiwan Australasian Joint Research Centre for Building Information Modelling, Australia Accepted 8 November 2012, Available online 28 February 2013Google Scholar
  21. 21.
    Empirical evidence, evaluation criteria and challenges for the effectiveness of virtual and mixed reality tools for training operators of car service maintenanceGoogle Scholar
  22. 22.
    Lisboa, H.B., de Oliveira Santos, L.A.R., Miyashiro, E.R., Sugawara, K.J., Miyagi, P.E., Junqueira, F.: 3D Virtual Environments For Manufacturing Automation. In: 22nd International Congress of Mechanical Engineering (COBEM 2013), University of São Paulo, Brazil November 3–7, 2013, Ribeirão Preto, SP, Brazil (2013)Google Scholar
  23. 23.
    Sampaio, A.Z., Martins, O.P.: The application of virtual reality technology in the construction of bridge: the cantilever and incremental launching methods Department of Civil Engineering and Architecture, Technical University of Lisbon, Lisbon, Portugal Accepted 19 October 2013, Available online 12 November 2013Google Scholar
  24. 24.
    Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasksGoogle Scholar
  25. 25.
    Wang, X., Truijens, M., Hou, L., Wang, Y., Zhou, Y.: Integrating augmented reality with building information modeling: onsite construction process controlling for liquefied natural gas industry Curtin-Woodside Chair Professor for Oil, Gas & LNG Construction and Project Management & Co-Director of Australasian Joint Research Centre for BIM, Curtin University, Australia International Scholar, Department of Housing and Interior Design, Kyung Hee University, South Korea, Woodside Energy, Ltd., Australia Australasian Joint Research Centre for BIM, Curtin University, Australia Huazhong University of Science and Technology and Northeastern University, China Accepted 7 December 2013, Available online 12 February 2014Google Scholar
  26. 26.
    Chi, H.-L., Kang, S.-C., Wang, X.: Research trends and opportunities of augmented reality applications in architecture, engineering, and construction. Australasian Joint Research Centre for BIM, School of Built Environment, Curtin University, Australia; International Scholar, Department of Housing and Interior Design, Kyung Hee University, Republic of Korea. Accepted 29 December 2012, Available online 22 January 2013Google Scholar
  27. 27.
    Vignais, N., Miezal, M., Bleser, G., Mura, K., Gorecky, D., Marin, F.: Innovative system for real-time ergonomic feedback in industrial manufacturing. In: UMR CNRS 7338 Biomechanics and Bioengineering, University of Technology of Compiègne, Research Center, Dct Schweitzer Street, 60200 Compiègne, France b DFKI GmbH, German Research Center for Artificial Intelligence, Trippstadter Strasse 122, D-67663 Kaiserslautern, Germany SmartFactoryKL, Trippstadter Strasse 122, 67663 Kaiserslautern, Germany Received 24 April 2012, Accepted 26 November 2012, Available online 20 December 2012Google Scholar
  28. 28.
    Fillatreau, P., Fourquet, J.-Y., Le Bolloc’h, R., Cailhol, S., Datas, A., Puel, B.: Using virtual reality and 3D industrial numerical models for immersive interactive checklists, LGP-ENIT, INPT, Université de Toulouse, 47 Avenue d’Azereix, BP 1629, 65016 Tarbes Cedex, France, Alstom Transport, France, Received 4 September 2012, Revised 11 March 2013, Accepted 28 March 2013, Available online 24 May 2013Google Scholar
  29. 29.
    Skripcak, T., Tanuska, P., Konrad, U., Schmeisser, N.: Toward nonconventional human-machine interfaces for supervisory plant process monitoring. IEEE Trans. Hum. Mach. Syst. 43(5), 437–450 (2013)CrossRefGoogle Scholar
  30. 30.
    Andaluz, V.H., Chicaiza, F.A., Gallardo, C., Quevedo, W.X., Varela, J., Sánchez, J.S., Arteaga, O.: Unity3D-MatLab simulator in real time for robotics applications. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 246–263. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40621-3_19 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Víctor H. Andaluz
    • 1
    • 2
  • Washington X. Quevedo
    • 1
  • Fernando A. Chicaiza
    • 1
  • Catherine Gálvez
    • 1
  • Gabriel Corrales
    • 1
  • Jorge S. Sánchez
    • 1
  • Edwin P. Pruna
    • 1
  • Oscar Arteaga
    • 1
  • Fabián A. Álvarez
    • 1
  • Galo Ávila
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Universidad Técnica de AmbatoAmbatoEcuador

Personalised recommendations