Advertisement

Improved Stereo Vision of Indoor Dense Suspended Scatterers Scenes from De-scattering Images

  • Chanh D. Tr. Nguyen
  • Kyeong Yong Cho
  • You Hyun Jang
  • Kyung-Soo Kim
  • Soohyun KimEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10072)

Abstract

Stereo vision is important in robotics since retrieving depth is very necessary in many robotics applications. Most of state-of-the-art stereo vision algorithms solve the problem with clear images but not the images corrupted by scattering. In this paper, we propose the stereo vision system for robot working in dense suspended scatterers environment. The imaging model of images taken in the environment under active light source based on single scattering phenomenon is analyzed. Based on that, scattering signal can be removed from images. The recovered images are then used as input image for stereo vision. The proposed method is then evaluated based on quality of stereo depth map.

Keywords

Stereo Vision Stereo Vision System Stereo Algorithm Stereo Reconstruction Stereo Vision Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Lazaros, N., Sirakoulis, G.C., Gasteratos, A.: Review of stereo vision algorithms: from software to hardware. Int. J. Optomechatronics 2, 435–462 (2008)CrossRefGoogle Scholar
  3. 3.
    Tippetts, B., Lee, D.J., Lillywhite, K., Archibald, J.: Review of stereo vision algorithms and their suitability for resource-limited systems. J. Real-Time Image Process. 11, 5–25 (2013)CrossRefGoogle Scholar
  4. 4.
    Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. 28, 650–656 (2006)CrossRefGoogle Scholar
  5. 5.
    Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013)CrossRefGoogle Scholar
  6. 6.
    Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: ICCV, pp. 1–33 (2001)Google Scholar
  7. 7.
    Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 787–800 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Polarization-based vision through haze. Appl. Opt. 42, 511–525 (2003)CrossRefGoogle Scholar
  9. 9.
    Treibitz, T., Schechner, Y.Y.: Active polarization descattering. IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009)CrossRefGoogle Scholar
  10. 10.
    McCartney, E.J.: Optics of the Atmosphere: Scattering by Molecules and Particles. Wiley, New York (1976)Google Scholar
  11. 11.
    Tan, R.T.: Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)Google Scholar
  12. 12.
    Fattal, R.: Single image dehazing. In: ACM SIGGRAPH 2008 Papers on - SIGGRAPH’08, p. 1. ACM Press, New York (2008)Google Scholar
  13. 13.
    Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vis. 98, 263–278 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2010)Google Scholar
  15. 15.
    Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24, 3522–3533 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhang, J., Cao, Y., Wang, Z.: Nighttime haze removal based on a new imaging model. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4557–4561. IEEE (2014)Google Scholar
  17. 17.
    Li, Y., Tan, R.T., Brown, M.S.: Nighttime haze removal with glow and multiple light colors. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 226–234. IEEE (2015)Google Scholar
  18. 18.
    Caraffa, L., Tarel, J.-P.: Combining stereo and atmospheric veil depth cues for 3D reconstruction. IPSJ Trans. Comput. Vis. Appl. 6, 1–11 (2014)CrossRefGoogle Scholar
  19. 19.
    Roser, M., Dunbabin, M., Geiger, A.: Simultaneous underwater visibility assessment, enhancement and improved stereo. In: 2014 IEEE International Conference on Robotics and Automation, pp. 3840–3847 (2014)Google Scholar
  20. 20.
    Negahdaripour, S., Sarafraz, A.: Improved stereo matching in scattering media by incorporating a backscatter cue. IEEE Trans. Image Process. 23, 5743–5755 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013)CrossRefGoogle Scholar
  22. 22.
    Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 504–511. IEEE (2013)Google Scholar
  23. 23.
    Treibitz, T., Schechner, Y.Y., Israel, T., Technology, I.: Instant 3D Escatter II, pp. 1861–1868 (2006)Google Scholar
  24. 24.
    Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer International Publishing, Cham (2014). doi: 10.1007/978-3-319-11752-2_3 Google Scholar
  25. 25.
    Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Chanh D. Tr. Nguyen
    • 1
  • Kyeong Yong Cho
    • 2
  • You Hyun Jang
    • 3
  • Kyung-Soo Kim
    • 1
  • Soohyun Kim
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringKAISTDaejeonSouth Korea
  2. 2.USRCKAISTDaejeonSouth Korea
  3. 3.Equipment Engineering Lab.Korea Hydro & Nuclear Power Co.DaejeonSouth Korea

Personalised recommendations