Signature Embedding: Writer Independent Offline Signature Verification with Deep Metric Learning

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10073)

Abstract

The handwritten signature is widely employed and accepted as a proof of a person’s identity. In our everyday life, it is often verified manually, yet only casually. As a result, the need for automatic signature verification arises. In this paper, we propose a new approach to the writer independent verification of offline signatures. Our approach, named Signature Embedding, is based on deep metric learning. Comparing triplets of two genuine and one forged signature, our system learns to embed signatures into a high-dimensional space, in which the Euclidean distance functions as a metric of their similarity. Our system ranks best in nearly all evaluation metrics from the ICDAR SigWiComp 2013 challenge. The evaluation shows a high generality of our system: being trained exclusively on Latin script signatures, it outperforms the other systems even for signatures in Japanese script.

References

  1. 1.
    Malik, M.I., Liwicki, M., Alewijnse, L., Ohyama, W., Blumenstein, M., Found, B.: ICDAR 2013 competitions on signature verification and writer identification for on-and offline skilled forgeries (SigWiComp 2013). In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1477–1483. IEEE (2013)Google Scholar
  2. 2.
    Hafemann, L.G., Sabourin, R., Oliveira, L.S.: Offline handwritten signature verification-literature review. arXiv preprint arXiv:1507.07909 (2015)
  3. 3.
    Yilmaz, M.B., Yanikoglu, B., Tirkaz, C., Kholmatov, A.: Offline signature verification using classifier combination of HOG and LBP features. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE (2011)Google Scholar
  4. 4.
    Malik, M.I., Ahmed, S., Marcelli, A., Pal, U., Blumenstein, M., Alewijns, L., Liwicki, M.: ICDAR 2015 competition on signature verification and writer identification for on-and off-line skilled forgeries (SigWiComp 2015). In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1186–1190. IEEE (2015)Google Scholar
  5. 5.
    Khalajzadeh, H., Mansouri, M., Teshnehlab, M.: Persian signature verification using convolutional neural networks. Int. J. Eng. Res. Technol. 1 (2012). ESRSA Publications, https://www.ijert.org/view-pdf/21/persian-signature-verification-using-convolutional-neural-networks
  6. 6.
    Hafemann, L.G., Sabourin, R., Oliveira, L.S.: Writer-independent feature learning for offline signature verification using deep convolutional neural networks. arXiv preprint arXiv:1604.00974 (2016)
  7. 7.
    Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E., Shah, R.: Signature verification using a “Siamese” time delay neural network. Int. J. Pattern Recogn. Artif. Intell. 7, 669–688 (1993)CrossRefGoogle Scholar
  8. 8.
    Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  9. 9.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  10. 10.
    Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: Advances in Neural Information Processing Systems (NIPS), p. 41 (2004)Google Scholar
  11. 11.
    Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24261-3_7 CrossRefGoogle Scholar
  12. 12.
    Brümmer, N., du Preez, J.: Application-independent evaluation of speaker detection. Comput. Speech Lang. 20, 230–275 (2006)CrossRefGoogle Scholar
  13. 13.
    Liwicki, M., Malik, M.I., van den Heuvel, C.E., Chen, X., Berger, C., Stoel, R., Blumenstein, M., Found, B.: Signature verification competition for online and offline skilled forgeries (SigComp 2011). In: 2011 International Conference on Document Analysis and Recognition, pp. 1480–1484. IEEE (2011)Google Scholar
  14. 14.
    Leeuwen, D.A., Brümmer, N.: An introduction to application-independent evaluation of speaker recognition systems. In: Müller, C. (ed.) Speaker Classification I. LNCS (LNAI), vol. 4343, pp. 330–353. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74200-5_19 CrossRefGoogle Scholar
  15. 15.
    Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., Satue, A., Hernaez, I., Igarza, J.J., Vivaracho, C., et al.: MCYT baseline corpus: a bimodal biometric database. IEEE Proc.-Vis. Image Sig. Process. 150, 395–401 (2003)CrossRefGoogle Scholar
  16. 16.
    Vargas, J.F., Ferrer, M.A., Travieso, C.M., Alonso, J.B.: Off-line handwritten signature GPDS-960 corpus. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) (2007)Google Scholar
  17. 17.
    Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source framework for deep learning. In: Proceedings of Workshop on Machine Learning Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Information Processing Systems (NIPS) (2015)Google Scholar
  18. 18.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Cogn. Model. 5, 1 (1988)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hannes Rantzsch
    • 1
  • Haojin Yang
    • 1
  • Christoph Meinel
    • 1
  1. 1.Hasso-Plattner-InstituteUniversity of PotsdamPotsdamGermany

Personalised recommendations