Advertisement

Adaptive Video Transition Detection Based on Multiscale Structural Dissimilarity

  • Anderson Carlos Sousa e Santos
  • Helio PedriniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10073)

Abstract

The fast growth in the acquisition and dissemination of videos has driven the development of diverse multimedia applications, such as interactive broadcasting, entertainment, surveillance, telemedicine, among others. Due to the massive amount of generated data, a challenging task is to store, browse and retrieve video content efficiently. This work describes and analyzes a novel automatic video transition method based on multiscale inter-frame dissimilarity vectors. The shot frames are identified by means of an adaptive local threshold mechanism. Experimental results demonstrate that the proposed approach is capable of achieving high accuracy rates when applied to several video sequences.

Keywords

Video transition Frame dissimilarities Shot detection Temporal segmentation Adaptive thresholding 

Notes

Acknowledgments

The authors are thankful to FAPESP (grants #2011/22749-8 and 2015/12228-1) and CNPq (grant #305169/2015-7) for their financial support.

References

  1. 1.
    Huang, T.S.: Image Sequence Analysis, vol. 5. Springer Science & Business Media, Berlin (2013)Google Scholar
  2. 2.
    Koprinska, I., Carrato, S.: Temporal video segmentation: a survey. Sig. Process. Image Commun. 16, 477–500 (2001)CrossRefGoogle Scholar
  3. 3.
    Jiang, H., Zhang, G., Wang, H., Bao, H.: Spatio-temporal video segmentation of static scenes and its applications. IEEE Trans. Multimedia 17, 3–15 (2015)CrossRefGoogle Scholar
  4. 4.
    Ngan, K.N., Li, H.: Video Segmentation and Its Applications. Springer Science & Business Media, Beriln (2011)CrossRefGoogle Scholar
  5. 5.
    Petersohn, C.: Temporal Video Segmentation. Jörg Vogt Verlag, Dresden (2010)Google Scholar
  6. 6.
    Cirne, M.V.M., Pedrini, H.: Summarization of videos by image quality assessment. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 901–908. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-12568-8_109 Google Scholar
  7. 7.
    Cotsaces, C., Nikolaidis, N., Pitas, I.: Video shot boundary detection and condensed representation: a review. IEEE Signal Process. Mag. 23, 28–37 (2006)CrossRefGoogle Scholar
  8. 8.
    Apostolidis, E., Mezaris, V.: Fast shot segmentation combining global and local visual descriptors. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6583–6587 (2014)Google Scholar
  9. 9.
    Birinci, M., Kiranyaz, S.: A perceptual scheme for fully automatic video shot boundary detection. Sig. Process. Image Commun. 29, 410–423 (2014)CrossRefGoogle Scholar
  10. 10.
    Jiang, X., Sun, T., Liu, J., Chao, J., Zhang, W.: An adaptive video shot segmentation scheme based on dual-detection model. Neurocomputing 116, 102–111 (2013)CrossRefGoogle Scholar
  11. 11.
    Lu, Z.M., Shi, Y.: Fast video shot boundary detection based on SVD and pattern matching. IEEE Trans. Image Process. 22, 5136–5145 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tippaya, S., Sitjongsataporn, S., Tan, T., Chamnongthai, K., Khan, M.: Video shot boundary detection based on candidate segment selection and transition pattern analysis. In: IEEE International Conference on Digital Signal Processing, pp. 1025–1029 (2015)Google Scholar
  13. 13.
    Whitehead, A., Bose, P., Laganiere, R.: Feature based cut detection with automatic threshold selection. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 410–418. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27814-6_49 CrossRefGoogle Scholar
  14. 14.
    Guimarães, S., Patrocínio, Z., Paula, H., Silva, H.: A new dissimilarity measure for cut detection using bipartite graph matching. Int. J. Semant. Comput. 03, 155–181 (2009)CrossRefGoogle Scholar
  15. 15.
    Almeida, J., Leite, N.J., S. Torres, R.: Rapid cut detection on compressed video. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 71–78. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25085-9_8 CrossRefGoogle Scholar
  16. 16.
    Pal, G., Acharjee, S., Rudrapaul, D., Ashour, A.S., Dey, N.: Video segmentation using minimum ratio similarity measurement. Int. J. Image Min. 1, 87–110 (2015)CrossRefGoogle Scholar
  17. 17.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol, 2, pp. 1398–1402 (2003)Google Scholar
  19. 19.
    Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Anderson Carlos Sousa e Santos
    • 1
  • Helio Pedrini
    • 1
    Email author
  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations