Advertisement

An Efficient Pedestrian Detector Based on Saliency and HOG Features Modeling

  • Mounir ErramiEmail author
  • Mohammed Rziza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10073)

Abstract

Most of pedestrian detection existing approaches rely on applying descriptors to the entire image or use a sliding window which resize the matching window at different scales and scan the image. However, these methods suffer from low computational efficiency and time consuming. We propose in this paper the use of saliency detection based on contourlet transform to generate a region of interest (ROI). The resulting saliency map is then used for features extraction using the HOG descriptor. Finally, the distribution of the generated features is estimated by a two-parameter Weibull model. The built feature vector is after trained using a support vector regression (SVR) classifier. Thus, the proposed approach provides two contributions. (1) By designing a saliency detection, we aim to remove noisy and busy background and focus on the area where the object exists which enhance the accuracy of the classification process. (2) By modeling the generated features, we intend to reduce the training dimension and make the system computationally efficient in real-time, or soft real-time. The results of the experimental study made on the challenging INRIA data set prove the effectiveness of the proposed approach.

References

  1. 1.
    Cheng, M.-M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.-M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)CrossRefGoogle Scholar
  2. 2.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  3. 3.
    Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)CrossRefGoogle Scholar
  5. 5.
    Errami, M., Rziza, M.: Improving pedestrian detection using support vector regression. In: 2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV), pp. 156–160. IEEE (2016)Google Scholar
  6. 6.
    Geismann, P., Knoll, A.: Speeding up HOG and LBP features for pedestrian detection by multiresolution techniques. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6453, pp. 243–252. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17289-2_24 CrossRefGoogle Scholar
  7. 7.
    Imamoglu, N., Lin, W., Fang, Y.: A saliency detection model using low-level features based on wavelet transform. IEEE Trans. Multimedia 15(1), 96–105 (2013)CrossRefGoogle Scholar
  8. 8.
    Kong, K.-K., Hong, K.-S.: Design of coupled strong classifiers in adaboost framework and its application to pedestrian detection. Pattern Recogn. Lett. 68, 63–69 (2015)CrossRefGoogle Scholar
  9. 9.
    Kwitt, R., Uhl, A.: Image similarity measurement by Kullback-Leibler divergences between complex wavelet subband statistics for texture retrieval. In: 2008 15th IEEE International Conference on Image Processing, pp. 933–936. IEEE (2008)Google Scholar
  10. 10.
    Lasmar, N.-E., Berthoumieu, Y.: Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans. Image Process. 23(5), 2246–2261 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Park, K.-Y., Hwang, S.-Y.: An improved Haar-like feature for efficient object detection. Pattern Recogn. Lett. 42, 148–153 (2014)CrossRefGoogle Scholar
  12. 12.
    Rami, H., Belmerhnia, L., El Maliani, A.D., El Hassouni, M.: Texture retrieval using mixtures of generalized Gaussian distribution and Cauchy-Schwarz divergence in wavelet domain. Sig. Process. Image Commun. 42, 45–58 (2016)CrossRefGoogle Scholar
  13. 13.
    Walk, S., Majer, N., Schindler, K., Schiele, B.: New features and insights for pedestrian detection. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1030–1037. IEEE (2010)Google Scholar
  14. 14.
    Wojek, C., Schiele, B.: A performance evaluation of single and multi-feature people detection. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 82–91. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69321-5_9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.LRIT, Associated Unit to CNRST (URAC No 29), Faculty of SciencesMohammed V UniversityRabatMorocco

Personalised recommendations