Fabrication and Characterizations of Bi2Te3 Based Topological Insulator Nanomaterials

Chapter

Abstract

In this manuscript, recent experimental research progresses in topological insulators Bi2Se3 and Bi2Te3 based nanostructures are presented, with a focus on nanoflakes, nanoplates, nanosheets, nanowires, and thin films of Bi2Te3 based topological insulator materials. Among the various synthesis methods, the chemical vapor deposition (CVD) method is described here as an example for the synthesis of topological insulator nanomaterials. The Raman spectroscopy and electrical transport characterizations are discussed on a few different types of topological insulators, such as binary/ternary/quaternary compound and elementally-doped nanostructures and films.

References

  1. 1.
    M.Z. Hasan et al., Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045–3067 (2010)CrossRefGoogle Scholar
  2. 2.
    J.E. Moore, The birth of topological insulators. Nature 464(7286), 194–196 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Zhang et al., Topological insulators in Bi2Te3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5(6), 438–442 (2009)CrossRefGoogle Scholar
  4. 4.
    B.A. Bernevig et al., Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314(5806), 1757–1761 (2006)CrossRefGoogle Scholar
  5. 5.
    D. Hsieh et al., A topological Dirac insulator in a quantum spin Hall phase. Nature 452(7190), 970–9U5 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Kampmeier et al., Suppressing twin domains in molecular beam epitaxy grown Bi2Te3 topological insulator thin films. Cryst. Growth Des. 15(1), 390–394 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Cho et al., Antisite defects of Bi2Te3 thin films. Appl. Phys. Lett. 75(10), 1401–1403 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Zhang et al., Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011)CrossRefGoogle Scholar
  9. 9.
    Z. Aabdin et al., Sb2Te3 and Bi2Te3 thin films grown by room-temperature MBE. J. Electron. Mater. 41(6), 1493 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Shimizu et al., Gate control of surface transport in MBE-grown topological insulator (Bi1-xSbx)2Te3 thin films. Phys. Rev. B 86(4), 045319 (2012)CrossRefGoogle Scholar
  11. 11.
    H.T. He et al., Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett. 106(16), 166805 (2011)CrossRefGoogle Scholar
  12. 12.
    N.V. Tarakina et al., Comparative study of the microstructure of Bi2Te3 Thin Films Grown on Si(111) and InP(111) Substrates. Cryst. Growth Des. 12(4), 2012 (1913-1918)Google Scholar
  13. 13.
    Z. Xu et al., Anisotropic topological surface states on high-index Bi2Se3 films. Adv. Mater. 25(11), 1557–1562 (2013)CrossRefGoogle Scholar
  14. 14.
    G. Zhang et al., Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential. Adv. Funct. Mater. 21(12), 2351–2355 (2011)CrossRefGoogle Scholar
  15. 15.
    L. Plucinski et al., Robust surface electronic properties of topological insulators: Bi2Te3 films grown by molecular beam epitaxy. Appl. Phys. Lett. 98(22), 222503 (2011)CrossRefGoogle Scholar
  16. 16.
    R.K. Gopal et al., Weak-antilocalization and surface dominated transport in topological insulator Bi2Se2Te. AIP Adv. 5(4), 047111 (2015)CrossRefGoogle Scholar
  17. 17.
    P. Roushan et al., Topological surface states protected from backscattering by chiral spin texture. Nature 460(7259), 1106–1U64 (2009)CrossRefGoogle Scholar
  18. 18.
    Z. Alpichshev et al., STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 104(1), 016401 (2010)CrossRefGoogle Scholar
  19. 19.
    J.J. Cha et al., Weak antilocalization in Bi2(SexTe1-x)3 nanoribbons and nanoplates. Nano Lett. 12(2), 1107–1111 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Bao et al., Weak Anti-localization and quantum oscillations of surface states in topological insulator Bi2Se2Te. Sci. Rep. 2, 726 (2012)CrossRefGoogle Scholar
  21. 21.
    H.L. Cao, R. Venkatasubramanian, et al., Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition. Appl. Phys. Lett. 101(16), 162104 (2012)CrossRefGoogle Scholar
  22. 22.
    Z.H. Wang, L. Richard, J. Qiu, et al., Ambipolar surface conduction in ternary topological insulator Bi2(Te1-xSex)3 nanoribbons. ACS Nano 7(3), 2126–2131 (2013)CrossRefGoogle Scholar
  23. 23.
    D. Hsieh, Y. Xia, et al., A tunable topological insulator in the spin helical Dirac transport regime. Nature 460(7259), 1101–1U59 (2009)CrossRefGoogle Scholar
  24. 24.
    D.S. Kong et al., Topological insulator nanowires and nanoribbons. Nano Lett. 10(1), 329–333 (2010)CrossRefGoogle Scholar
  25. 25.
    B. Yu et al., Chemical assembly and electrical characteristics of surface-rich topological insulator Bi2Te3 nanoplates and nanoribbons. Appl. Phys. Lett. 101(14), 143103 (2012)CrossRefGoogle Scholar
  26. 26.
    G. Ramanath et al., Microsphere bouquets of bismuth telluride nanoplates: room-temperature synthesis and thermoelectric properties. J. Phys. Chem. C 114(4), 1796–1799 (2010)CrossRefGoogle Scholar
  27. 27.
    K. Kern et al., Two-dimensional magnetotransport in Bi2Te2Se nanoplatelets. Appl. Phys. Lett. 101(2), 023116 (2012)CrossRefGoogle Scholar
  28. 28.
    Z.F. Liu et al., Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 10(8), 2870–2876 (2010)CrossRefGoogle Scholar
  29. 29.
    J.G. Checkelsky et al., Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys. Rev. Lett. 106(19), 196801 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Lu et al., Proximity effect at superconducting Sn-Bi2Te3 interface. Phys. Rev. B 85(10), 104508 (2012)CrossRefGoogle Scholar
  31. 31.
    Q.H. Xiong et al., Enhanced thermoelectric properties of solution grown Bi2Te3-xSex nanoplatelet composites. Nano Lett. 12(3), 1203–1209 (2012)CrossRefGoogle Scholar
  32. 32.
    D.S. Kong et al., Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10(6), 2245–2250 (2010)CrossRefGoogle Scholar
  33. 33.
    Y.Y. Li et al., Intrinsic topological insulator Bi2Te3 thin films on si and their thickness limit. Adv. Mater. 22(36), 4002–4007 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Kapitulnik et al., Weak localization effects as evidence for bulk quantization in Bi2Te3 thin films. Phys. Rev. B 88(12), 121103 (2013)CrossRefGoogle Scholar
  35. 35.
    M.R. Lang et al., Revelation of topological surface states in Bi2Se3 thin films by in situ al passivation. ACS Nano 6(1), 295–302 (2012)CrossRefGoogle Scholar
  36. 36.
    K. He et al., From magnetically doped topological insulator to the quantum anomalous hall effect. Chin. Phys. B 22(6), 067305 (2013)CrossRefGoogle Scholar
  37. 37.
    X.F. Kou et al., Manipulating surface-related ferromagnetism in modulation-doped topological insulators. Nano Lett. 13(10), 4587–4593 (2013)CrossRefGoogle Scholar
  38. 38.
    H.B. Zhang et al., High-performance Bi2Te3-based topological insulator film magnetic field detector. ACS Appl. Mater. Interfaces 5(22), 11503–11508 (2013)CrossRefGoogle Scholar
  39. 39.
    H.B. Zhang et al., Magnetoresistance switch effect of a sn-doped Bi2Te3 topological insulator. Adv. Mater. 24(1), 132 (2012)CrossRefGoogle Scholar
  40. 40.
    R.J. Cava et al., A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J. Appl. Phys. 114(11), 114907 (2013)CrossRefGoogle Scholar
  41. 41.
    Y.L. Chen et al., Observing electronic structures on ex-situ grown topological insulator thin films. Phys. Status Solidi-Rapid. Res. Lett. 7(1–2), 130–132 (2013)Google Scholar
  42. 42.
    A.A. Balandin, Crystal symmetry breaking in few-quintuple Bi2Te3 films: applications in nanometrology of topological insulators. Appl. Phys. Lett. 96(15), 153103 (2010)CrossRefGoogle Scholar
  43. 43.
    C.H. Lee et al., Metal-insulator transition in variably doped (Bi1-xSbx)2Se3 nanosheets. Nanoscale 5(10), 4337–4343 (2013)CrossRefGoogle Scholar
  44. 44.
    R. He et al., Observation of infrared-active modes in Raman scattering from topological insulator nanoplates. Nanotechnology 23(45), 455703 (2012)CrossRefGoogle Scholar
  45. 45.
    Z.H. Wang et al., Linear magnetoresistance versus weak antilocalization effects in Bi2Te3. Nano Res. 8(9), 2963–2969 (2015)CrossRefGoogle Scholar
  46. 46.
    Z.H. Wang et al., Granularity controlled nonsaturating linear magnetoresistance in topological insulator Bi2Te3 films. Nano Lett. 14(11), 6510–6514 (2014)CrossRefGoogle Scholar
  47. 47.
    Z.Y. Fan et al., Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21(37), 3730–3743 (2009)CrossRefGoogle Scholar
  48. 48.
    R. He et al., Laser induced oxidation and optical properties of stoichiometric and non-stoichiometric Bi2Te3 nanoplates. Nano Res. 8(3), 851–859 (2015)CrossRefGoogle Scholar
  49. 49.
    J. Zhang et al., Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 11(6), 2407–2414 (2011)CrossRefGoogle Scholar
  50. 50.
    J.H. Guo et al., Growth and microstructures of ultrathin Bi2Te3 nanoplates by modified hot wall epitaxy. Nano 9(6), 1450056 (2014)CrossRefGoogle Scholar
  51. 51.
    M. Zhao, M. Bosman, M. Danesh, et al., visible surface plasmon modes in single Bi2Te3 nanoplate. Nano Lett. 15(12), 8331–8335 (2015)CrossRefGoogle Scholar
  52. 52.
    X. He, H. Zhang, W. Lin, et al., PVP-assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates: application in passively Q-switched fiber laser. Sci. Rep. 5, 15868 (2015)CrossRefGoogle Scholar
  53. 53.
    B. Liu, W.Y. Xie, H. Li, et al., Surrounding sensitive electronic properties of Bi2Te3 nanoplates-potential sensing applications of topological insulators. Sci. Rep. 4, 4639 (2014)Google Scholar
  54. 54.
    D.S. Kong et al., Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 5(6), 4698–4703 (2011)CrossRefGoogle Scholar
  55. 55.
    D.X. Qu et al., Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science 329(5993), 821–824 (2010)CrossRefGoogle Scholar
  56. 56.
    S.S. Hong et al., Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 10(8), 3118–3122 (2010)CrossRefGoogle Scholar
  57. 57.
    H. Tang et al., Two-dimensional transport—induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 5(9), 7510–7516 (2011)CrossRefGoogle Scholar
  58. 58.
    Y. Yan et al., Large magnetoresistance in high mobility topological insulator Bi2Te3. Appl. Phys. Lett. 103(3), 033106 (2013)CrossRefGoogle Scholar
  59. 59.
    D.P. Yu et al., Synthesis and quantum transport properties of Bi2Se3 topological insulator nanostructures. Sci. Rep. 3, 1264 (2013)Google Scholar
  60. 60.
    L. Lu et al., Coexistence of bulk and surface shubnikov-de haas oscillations in Bi2Se3. J. Low Temp. Phys. 170(5–6), 397–402 (2013)Google Scholar
  61. 61.
    H.L. Peng et al., Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 9(3), 225–229 (2010)MathSciNetGoogle Scholar
  62. 62.
    S. Cho et al., Insulating behavior in ultrathin bismuth selenide field effect transistors. Nano Lett. 11(5), 1925–1927 (2011)CrossRefGoogle Scholar
  63. 63.
    D. Kim et al., Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 8(6), 459–463 (2012)Google Scholar
  64. 64.
    D. Kim et al., Intrinsic electron-phonon resistivity of Bi2Te3 in the topological regime. Phys. Rev. Lett. 109(15), 166801 (2012)CrossRefGoogle Scholar
  65. 65.
    F.X. Xiu et al., Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 6(4), 216–221 (2011)CrossRefGoogle Scholar
  66. 66.
    Y. Wang et al., Gate-controlled surface conduction in na-doped Bi2Te3 topological insulator nanoplates. Nano Lett. 12(3), 1170–1175 (2012)CrossRefGoogle Scholar
  67. 67.
    Y. Yan et al., Synthesis and field emission properties of topological insulator Bi2Se3 nanoflake arrays. Nanotechnology 23(30), 305704 (2012)CrossRefGoogle Scholar
  68. 68.
    Y. Xia et al., Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5(6), 398–402 (2009)CrossRefGoogle Scholar
  69. 69.
    M.Z. Hasan et al., A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nat. Phys. 7(1), 32–37 (2011)CrossRefGoogle Scholar
  70. 70.
    D.S. Dessau et al., Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators. Nat. Phys. 9(8), 499–504 (2013)CrossRefGoogle Scholar
  71. 71.
    A. Yazdani et al., Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat. Phys. 7(12), 939–943 (2011)CrossRefGoogle Scholar
  72. 72.
    K. Kern et al., Growth of high-mobility Bi2Te2Se nanoplatelets on hBN sheets by van der waals epitaxy. Nano Lett. 12(10), 5137–5142 (2012)CrossRefGoogle Scholar
  73. 73.
    N. Samarth et al., Superconducting proximity effect and possible evidence for Pearl vortices in a candidate topological insulator. Phys. Rev. B 84(16), 165120 (2011)CrossRefGoogle Scholar
  74. 74.
    B. Xia et al., Indications of surface-dominated transport in single crystalline nanoflake devices of topological insulator Bi1.5Sb0.5Te1.8Se1.2. Phys. Rev. B 87(8), 085442 (2013)CrossRefGoogle Scholar
  75. 75.
    T.C. Hsiung et al., Enhanced surface mobility and quantum oscillations in topological insulator Bi1.5Sb0.5Te1.7Se1.3 nanoflakes. Appl. Phys. Lett. 103(16), 163111 (2013)CrossRefGoogle Scholar
  76. 76.
    Z.Y. Wang et al., Tuning carrier type and density in Bi2Se3 by Ca-doping. Appl. Phys. Lett. 97(4), 042112 (2010)CrossRefGoogle Scholar
  77. 77.
    Z.G. Chen et al., Paramagnetic Cu-doped Bi2Te3 nanoplates. Appl. Phys. Lett. 104(5), 053105 (2014)CrossRefGoogle Scholar
  78. 78.
    Q. Liu et al., Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102(15), 156603 (2009)CrossRefGoogle Scholar
  79. 79.
    L. Cheng et al., High curie temperature Bi1.85Mn0.15Te3 nanoplates. J. Am. Chem. Soc. 134(46), 18920–18923 (2012)CrossRefGoogle Scholar
  80. 80.
    J.J. Cha et al., Effects of magnetic doping on weak antilocalization in narrow Bi2Se3 nanoribbons. Nano Lett. 12(8), 4355–4359 (2012)CrossRefGoogle Scholar
  81. 81.
    J.J. Cha et al., Magnetic doping and kondo effect in Bi2Se3 nanoribbons. Nano Lett. 10(3), 1076–1081 (2010)CrossRefGoogle Scholar
  82. 82.
    F. Qu et al., Strong superconducting proximity effect in PbBi2Te3 hybrid structures. Sci. Rep. 2, 339 (2012)CrossRefGoogle Scholar
  83. 83.
    G.H. Zhang et al., Quintuple-layer epitaxy of thin films of topological insulator Bi2Te3. Appl. Phys. Lett. 95(5), 053114 (2009)CrossRefGoogle Scholar
  84. 84.
    C.L. Song et al., Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy. Appl. Phys. Lett. 97(14), 143118 (2010)CrossRefGoogle Scholar
  85. 85.
    G. Wang et al., Topological insulator thin films of Bi2Te3 with controlled electronic structure. Adv. Mater. 23(26), 2929–2932 (2011)CrossRefGoogle Scholar
  86. 86.
    Y. Liu et al., Interfacial bonding and structure of Bi2Te3 topological insulator films on Si(111) determined by surface x-ray scattering. Phys. Rev. Lett. 110(22), 226103 (2013)CrossRefGoogle Scholar
  87. 87.
    P.P.J. Haazen et al., Ferromagnetism in thin-film Cr-doped topological insulator Bi2Se3. Appl. Phys. Lett. 100(8), 082404 (2012)CrossRefGoogle Scholar
  88. 88.
    H.W. Liu et al., Growth of topological insulator Bi2Te3 ultrathin films on Si(111) investigated by low-energy electron microscopy. Cryst. Growth Des. 10(10), 4491–4493 (2010)CrossRefGoogle Scholar
  89. 89.
    V. Goyal et al., Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance. Appl. Phys. Lett. 97(13), 133117 (2010)CrossRefGoogle Scholar
  90. 90.
    K.M.F. Shahil et al., Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. J. Appl. Phys. 111(5), 054305 (2012)CrossRefGoogle Scholar
  91. 91.
    H.B. Zhang et al., Experimental evidence of the nanoscaled topological metallic surface state of Bi2Te3 and Sb2Te3 films. Europhys. Lett. 95(5), 56002 (2011)CrossRefGoogle Scholar
  92. 92.
    X.X. Yu et al., Separation of top and bottom surface conduction in Bi2Te3 thin films. Nanotechnology 24(1), 015705 (2013)CrossRefGoogle Scholar
  93. 93.
    M. Chen et al., Molecular beam epitaxy of bilayer Bi(111) films on topological insulator Bi2Te3: a scanning tunneling microscopy study. Appl. Phys. Lett. 101(8), 081603 (2012)CrossRefGoogle Scholar
  94. 94.
    H.T. He et al., High-field linear magneto-resistance in topological insulator Bi2Te3 thin films. Appl. Phys. Lett. 100(3), 032105 (2012)CrossRefGoogle Scholar
  95. 95.
    S.X. Zhang et al., Magneto-resistance up to 60 Tesla in topological insulator Bi2Te3 thin films. Appl. Phys. Lett. 101(20), 202403 (2012)CrossRefGoogle Scholar
  96. 96.
    B.F. Gao et al., Gate-controlled linear magnetoresistance in thin Bi2Se3 sheets. Appl. Phys. Lett. 100(21), 212402 (2012)CrossRefGoogle Scholar
  97. 97.
    S. Hikami et al., Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63(2), 707–710 (1980)CrossRefGoogle Scholar
  98. 98.
    X. He et al., Highly tunable electron transport in epitaxial topological insulator (Bi1-xSbx)2Te3 thin films. Appl. Phys. Lett. 101(12), 123111 (2012)CrossRefGoogle Scholar
  99. 99.
    L. He et al., Evidence of the two surface states of (Bi0.53Sb0.47)2Te3 films grown by van der Waals epitaxy. Sci. Rep. 3, 3406 (2013)Google Scholar
  100. 100.
    M. Lang et al., Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett. 13(1), 48–53 (2013)CrossRefGoogle Scholar
  101. 101.
    X.G. Zhu et al., Doping nature of Cu in epitaxial topological insulator Bi2Te3 thin films. Surf. Sci. 617, 156–161 (2013)CrossRefGoogle Scholar
  102. 102.
    Y.L. Wang et al., Structural defects and electronic properties of the Cu-doped topological insulator Bi2Se3. Phys. Rev. B 84(7), 075335 (2011)CrossRefGoogle Scholar
  103. 103.
    A. Ribak et al., Internal pressure in superconducting Cu-intercalated Bi2Se3. Phys. Rev. B 93(6), 064505 (2016)CrossRefGoogle Scholar
  104. 104.
    H.B. Zhang et al., Robust topological surface transport with weak localization bulk channels in polycrystalline Bi2Te3 films. J. Phys. D Appl. Phys. 49(9), 095003 (2016)CrossRefGoogle Scholar
  105. 105.
    H.B. Zhang et al., Weak localization bulk state in a topological insulator Bi2Te3 film. Phys. Rev. B 86(7), 075102 (2012)CrossRefGoogle Scholar
  106. 106.
    Q. Yang et al., Emerging weak localization effects on a topological insulator–insulating ferromagnet (Bi2Se3-EuS) interface. Phys. Rev. B 88(8), 081407 (2013)CrossRefGoogle Scholar
  107. 107.
    L. Wu et al., A sudden collapse in the transport lifetime across the topological phase transition in (Bi1−xInx)2Se3. Nat. Phys. 9(7), 410–414 (2013)CrossRefGoogle Scholar
  108. 108.
    M. Brahlek et al., Topological-metal to band-insulator transition in (Bi1−xInx)2Se3 thin films. Phys. Rev. Lett. 109(18), 186403 (2012)CrossRefGoogle Scholar
  109. 109.
    M.H. Liu et al., Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys. Rev. Lett. 108(3), 036805 (2012)CrossRefGoogle Scholar
  110. 110.
    D.M. Zhang et al., Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys. Rev. B 86(20), 205127 (2012)CrossRefGoogle Scholar
  111. 111.
    I. Vobornik et al., Magnetic proximity effect as a pathway to spintronic applications of topological insulators. Nano Lett. 11(10), 4079–4082 (2011)CrossRefGoogle Scholar
  112. 112.
    C.L. Song et al., Gating the charge state of single Fe dopants in the topological insulator Bi2Te3 with a scanning tunneling microscope. Phys. Rev. B 86(4), 045441 (2012)CrossRefGoogle Scholar
  113. 113.
    D. West et al., Identification of magnetic dopants on the surfaces of topological insulators: experiment and theory for Fe on Bi2Te3 (111). Phys. Rev. B 85(8), 081305 (2012)CrossRefGoogle Scholar
  114. 114.
    J.S. Zhang et al., Topology-driven magnetic quantum phase transition in topological insulators. Science 339(6127), 1582–1586 (2013)CrossRefGoogle Scholar
  115. 115.
    X.F. Kou et al., Interplay between different magnetisms in Cr-doped topological insulators. ACS Nano 7(10), 9205–9212 (2013)CrossRefGoogle Scholar
  116. 116.
    C.Z. Chang et al., Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25(7), 1065–1070 (2013)CrossRefGoogle Scholar
  117. 117.
    J. Wang et al., Quantum anomalous Hall effect in magnetic topological insulators. Phys. Scr. T164, 014003 (2015)CrossRefGoogle Scholar
  118. 118.
    R. Yu et al., Quantized anomalous Hall effect in magnetic topological insulators. Science 329(5987), 61–64 (2010)CrossRefGoogle Scholar
  119. 119.
    C.Z. Chang et al., Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340(6129), 167–170 (2013)CrossRefGoogle Scholar
  120. 120.
    J.G. Checkelsky et al., Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10(10), 731–736 (2014)Google Scholar
  121. 121.
    X. Kou et al., Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113(13), 137201 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangPeople’s Republic of China
  2. 2.Department of PhysicsCase Western Reserve UniversityClevelandUSA

Personalised recommendations