Micro Cork Particles as Adhesive Reinforcement Material for Brittle Resins

  • A. Q. Barbosa
  • L. F. M. da Silva
  • A. Öchsner
  • E. A. S. Marques
  • J. Abenojar
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 65)


Structural adhesives are progressively replacing conventional bonding methods, being constantly adopted for new applications. The most commonly used structural adhesives are epoxies due to their good mechanical, thermal and chemical properties, having a wide range of application. Epoxies are recognized for their high stiffness and strength, induced by their high degree of crosslinking. While the densely cross-linked molecular structure is responsible for the excellent properties of these materials, it also makes them inherently brittle, resulting in low ductility and toughness. Several researchers have, in the past decades, found necessary to mitigate this effect and developed new methods to increase the toughness of structural adhesives. There are many processes depicted in the literature on how to increase the toughness of adhesives. For example, the inclusion of particles (of nano or micro scale) is a successful technique to improve the toughness of structural adhesives. In this chapter, natural micro particles of cork are used with the objective of increasing the toughness of a brittle epoxy adhesive. The fundamental basis of this concept is for the cork particles to act like crack stoppers, leading to more energy absorption. An overview of how the micro cork particles can be used as reinforcement material for brittle resins is described. The main parameters that affect the mechanical properties of composite resin/cork, kinetic and chemical reactions between resin and cork and how this new material behaves in hygrothermal degradation, were analysed. It is concluded that the cork can be used as reinforcing material, promoting increased toughness of the adhesive without any chemical changes in the molecular structure or premature degradation of the adhesive.


Epoxy Cork Micro-particles Reinforcement material 



Financial support by Foundation for Science and Technology (PTDC/EME-TME/098752/2008 and SFRH/BD/88173/2012) are greatly acknowledged.


  1. 1.
    Packham, D.E.: Handbook of Adhesion. Wiley, England (2005)CrossRefGoogle Scholar
  2. 2.
    Adams, R.D.: Adhesive Bonding—Science. Technology and Applications. Woodhead Publishing Limited, Cambridge (2000)Google Scholar
  3. 3.
    Bucknall, C.B.: Toughened Plastics. Springer Science-Business Media, London (1977)CrossRefGoogle Scholar
  4. 4.
    Huang, Y., Hunston, D.L., Kinloch, A.J., Riew, C.K.: Mechanisms of toughening thermoset resins. In: Toughened Plastics I: Science and Engineering, pp. 1–35. American Chemical Society, Washington (1993)Google Scholar
  5. 5.
    Ramos, V.D., Costa, H.M., Soares, V.L.P., Nascimento, R.S.V.: Modification of epoxy resin: a comparison of different types of elastometer. Polym. Test 24(3), 387–394 (2005)CrossRefGoogle Scholar
  6. 6.
    Cardwell, B., Yee, A.F.: Toughening of epoxies through thermoplastic crack bridging. J. Mater. Sci. 33(22), 5473–5484 (1998)CrossRefGoogle Scholar
  7. 7.
    Tandon, G., Weng, G.: A theory of particle-reinforced plasticity. J. Appl. Mech. 55(1), 126–135 (1988)CrossRefGoogle Scholar
  8. 8.
    Martuscelli, E., Musto, P., Ragosta, G.: Advanced Routes for Polymer Toughening. Elsevier, Amsterdam (1996)Google Scholar
  9. 9.
    Gkikas, G., Barkoula, N.M., Paipetis, A.S.: Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos. B 43(6), 2697–2705 (2012)CrossRefGoogle Scholar
  10. 10.
    Barbosa, A.Q., da Silva, L.F.M., Banea, M.D., Öchsner, A.: Methods to increase the toughness of structural adhesives with micro particles: an overview with focus on cork particles. Materialwiss Werkst, 47(4), 307–325 (2016)Google Scholar
  11. 11.
    Lange, F.: The interaction of a crack front with a second-phase dispersion. Philos. Mag. 22(179), 0983–0992 (1970)CrossRefGoogle Scholar
  12. 12.
    Withers, G.J., Yu, Y., Khabashesku, V.N., Cercone, L., Hadjiev, V.G., Souza, J.M., Davi, D.C.: Improved mechanical properties of an epoxy glass–fiber composite reinforced with surface organomodified nanoclays. Compos. B 72, 175–182 (2015)CrossRefGoogle Scholar
  13. 13.
    Petrie, E.M.: Handbook of adhesives and sealants. The McGraw-Hill Companies Inc, New York (2000)Google Scholar
  14. 14.
    Pethrick, R.A.: Design and ageing of adhesives for structural adhesive bonding–a review. In: Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater. Des. Appl., 1464420714522981 (2014)Google Scholar
  15. 15.
    Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C.: Sprenger, S, Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2), 530–541 (2007)CrossRefGoogle Scholar
  16. 16.
    Oksman, K., Skrifvars, M., Selin, J.-F.: Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63(9), 1317–1324 (2003)CrossRefGoogle Scholar
  17. 17.
    Hamza, T.A., Rosenstiel, S.F., Elhosary, M., Ibraheem, R.M.: The effect of fiber reinforcement on the fracture toughness and flexural strength of provisional restorative resins. J. Prosthet. Dentist. 91(3), 258–264 (2004)CrossRefGoogle Scholar
  18. 18.
    Barbosa, A.Q., da Silva, L.F.M., Öchsner, A., Abenojar, J., del Real, J.C.: Influence of the size and amount of cork particles on the impact toughness of a structural adhesive. J. Adhesion 88(4–6), 452–470 (2012)CrossRefGoogle Scholar
  19. 19.
    Barbosa, A.Q., da Silva, L.F.M., Abenojar, J., del Real, J.C., Paiva, R.M.M., Öchsner, A.: Kinetic analysis and characterization of an epoxy/cork adhesive. Thermochima Acta 604, 52–60 (2015)CrossRefGoogle Scholar
  20. 20.
    Barbosa, A.Q., da Silva, L.F.M., Öchsner, A., Abenojar, J., del Real, J.C.: Utilização de micro partículas de cortiça como material de reforço em adesivos estruturais frágeis. Ciência & Tecnologia dos Mater. 25(1), 42–49 (2013)CrossRefGoogle Scholar
  21. 21.
    Barbosa, A.Q., da Silva, L.F.M., Öchsner, A.: Hygrothermal aging of an adhesive reinforced with microparticles of cork. J. Adhes. Sci. Technol. 29(16), 1714–1732 (2015)CrossRefGoogle Scholar
  22. 22.
    Barbosa, A.Q., da Silva, L.F.M., Oechsner, A.: Effect of the amount of cork particles on the strength and glass transition temperature of a structural adhesive. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 228(4), 323–333 (2013)Google Scholar
  23. 23.
    Fortes, M.A., Pereira, H.: A Cortiça. IST Press, Lisboa (2004)Google Scholar
  24. 24.
    Silva, S.P., Sabino, M.A., Fernandes, E.M., Correlo, V.M., Boesel, L.F., Reis, R.L.: Cork: properties, capabilities and applications. Int. Mater. Rev. 50(6), 345–365 (2005)CrossRefGoogle Scholar
  25. 25.
    Pereira, H.: Chemical composition and variability of cork from Quercus suber L. Wood Sci. Technol. 22(3), 211–218 (1988)CrossRefGoogle Scholar
  26. 26.
    Úbeda, X., Pereira, P., Outeiro, L., Martin, D.A.: Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degrad. Dev. 20(6), 589–608 (2009)CrossRefGoogle Scholar
  27. 27.
    Mano, J.F.: The viscoelastic properties of cork. J. Mater. Sci. 37(2), 257–263 (2002)CrossRefGoogle Scholar
  28. 28.
    Gil, L.: Cortiça: produção, tecnologia e aplicação. INETI, Lisboa (1998)Google Scholar
  29. 29.
    Gil, L.: New cork-based materials and applications. Materials 8(2), 625–637 (2015)CrossRefGoogle Scholar
  30. 30.
    Gil, L.: Cork composites: a review. Materials 2(3), 776–789 (2009)CrossRefGoogle Scholar
  31. 31.
    Abdallah, F.B., Cheikh, R.B., Baklouti, M., Denchev, Z., Cunha, A.M.: Effect of surface treatment in cork reinforced composites. J. Polym. Res. 17(4), 519–528 (2010)CrossRefGoogle Scholar
  32. 32.
    Singh, R., Zhang, M., Chan, D.: Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction. J. Mater. Sci. 37(4), 781–788 (2002)CrossRefGoogle Scholar
  33. 33.
    Kitey, R., Tippur, H.: Role of particle size and filler–matrix adhesion on dynamic fracture of glass-filled epoxyI. Macromeasurements. Acta Mater. 53(4), 1153–1165 (2005)CrossRefGoogle Scholar
  34. 34.
    Lauke, B.: On the effect of particle size on fracture toughness of polymer composites. Compos. Sci. Technol. 68(15), 3365–3372 (2008)CrossRefGoogle Scholar
  35. 35.
    Fu, S.-Y.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. B Eng. 39(6), 933–961 (2008)CrossRefGoogle Scholar
  36. 36.
    Nakamura, Y., Yamaguchi, M., Okubo, M., Matsumoto, T.: Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. J. Appl. Polym. Sci. 45(7), 1281–1289 (1992)CrossRefGoogle Scholar
  37. 37.
    Kim, B.C., Park, S.W.: Fracture toughness of the nano-particle reinforced epoxy composite. Compos. Struct. 86(1), 69–77 (2008)CrossRefGoogle Scholar
  38. 38.
    Azimi, H., Pearson, R., Hertzberg, R.: Fatigue of rubber-modified epoxies: effect of particle size and volume fraction. J. Mater. Sci. 31(14), 3777–3789 (1996)CrossRefGoogle Scholar
  39. 39.
    Rothon, R.: Particulate-Filled Polymer Composites. iSmithers Rapra Publishing (2003)Google Scholar
  40. 40.
    Nakamura, Y., Yamaguchi, M., Kitayama, A., Okubo, M., Matsumoto, T.: Effect of particle size on fracture toughness of epoxy resin filled with angular-shaped silica. Polymer 32(12), 2221–2229 (1991)CrossRefGoogle Scholar
  41. 41.
    Bagheri, R., Marouf, B., Pearson, R.: Rubber-toughened epoxies: a critical review. J. Macromol. Sci., Part C: Polymer Rev. 49(3), 201–225 (2009)Google Scholar
  42. 42.
    Wrotecki, C., Heim, P., Gaillard, P.: Rubber toughening of poly (methyl methacrylate). Part II: effect of a twin population of particle size. Polym. Eng. Sci. 31(4), 218–222 (1991)CrossRefGoogle Scholar
  43. 43.
    Minfeng, Z., Xudong, S., Huiquan, X., Genzhong, J., Xuewen, J., Baoyi, W., Chenze, Q.: Investigation of free volume and the interfacial, and toughening behavior for epoxy resin/rubber composites by positron annihilation. Radiat. Phys. Chem. 77(3), 245–251 (2008)CrossRefGoogle Scholar
  44. 44.
    Huang, Y., Kinloch, A.: The toughness of epoxy polymers containing microvoids. Polymer 33(6), 1330–1332 (1992)CrossRefGoogle Scholar
  45. 45.
    Kinloch, A., Hunston, D.: Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. J. Mater. Sci. Lett. 6(2), 137–139 (1987)CrossRefGoogle Scholar
  46. 46.
    Herrera-Franco, P., Valadez-Gonzalez, A.: Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. A Appl. Sci. Manuf. 35(3), 339–345 (2004)CrossRefGoogle Scholar
  47. 47.
    Abenojar, J., Torregrosa-Coque, R., Martínez, M.A., Martín-Martínez, J.M.: Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surf. Coat. Technol. 203(16), 2173–2180 (2009)CrossRefGoogle Scholar
  48. 48.
    Abenojar, J., Martinez, M.A., Velasco, F., Pascual-Sanchez, V., Martin-Martinez, J.M.: Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin. J. Adhes. 85(4–5), 216–238 (2009)CrossRefGoogle Scholar
  49. 49.
    Zhang, Y., Adams, R., da Silva, L.F.M.: Absorption and glass transition temperature of adhesives exposed to water and toluene. Int. J. Adhes. Adhes. 50, 85–92 (2014)CrossRefGoogle Scholar
  50. 50.
    Moy, P., Karasz, F.: The interactions of water with epoxy resins. Polym. Eng. Sci. 20(4), 315–319 (1980)CrossRefGoogle Scholar
  51. 51.
    Zhang, Y., Adams, R., da Silva, L.F.M.: Effects of curing cycle and thermal history on the glass transition temperature of adhesives. J. Adhes. 90(4), 327–345 (2014)CrossRefGoogle Scholar
  52. 52.
    Pavlidou, S., Papaspyrides, C.: The effect of hygrothermal history on water sorption and interlaminar shear strength of glass/polyester composites with different interfacial strength. Compos. A Appl. Sci. Manuf. 34(11), 1117–1124 (2003)CrossRefGoogle Scholar
  53. 53.
    Thwe, M.M., Liao, K.: Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos. A Appl. Sci. Manuf. 33(1), 43–52 (2002)CrossRefGoogle Scholar
  54. 54.
    Fernández-García, M., Chiang, M.: Effect of hygrothermal aging history on sorption process, swelling, and glass transition temperature in a particle-filled epoxy-based adhesive. J. Appl. Polym. Sci. 84(8), 1581–1591 (2002)CrossRefGoogle Scholar
  55. 55.
    Ashcroft, I.A., Wahab, M.A., Crocombe, A.D., Hughes, D.J., Shaw, S.J.: The effect of environment on the fatigue of bonded composite joints. Part 1: testing and fractography. Compos. A Appl. Sci. Manuf. 32(1), 45–58 (2001)CrossRefGoogle Scholar
  56. 56.
    Wahab, M.A., Ashcroft, I.A., Crocombe, A.D., Hughes, D.J., Shaw, S.J.: The effect of environment on the fatigue of bonded composite joints. Part 2: fatigue threshold prediction. Compos. A Appl. Sci. Manuf. 32(1), 59–69 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • A. Q. Barbosa
    • 1
  • L. F. M. da Silva
    • 2
  • A. Öchsner
    • 3
  • E. A. S. Marques
    • 1
  • J. Abenojar
    • 4
  1. 1.INEGIPortoPortugal
  2. 2.Faculty of Engineering, Department of Mechanical EngineeringUniversity of PortoPortoPortugal
  3. 3.Griffith School of EngineeringGriffith University (Gold Coast Campus)Southport QueenslandAustralia
  4. 4.Materials Performance Group, Materials Science and Engineering DepartmentUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations