Advertisement

Revisiting the Role of Implant Design and Surgical Instrumentation on Osseointegration

  • Paulo G. Coelho
  • Estevam A. BonfanteEmail author
  • Ryo Jimbo
Chapter

Abstract

Osseointegration of metallic devices has shown to be successful in several biomedical fields. Despite the high success rates, continuous efforts to reduce osseointegration time have been marked by investigations considering a limited number of variables. Recent research has pointed that the interplay between surgical instrumentation and device macrogeometry not only plays a key role on both early and delayed stages of osseointegration but may also be key in how efficient smaller length scale designing (at the micro- and nanogeometrical levels) may be in hastening early stages of osseointegration. The present chapter focuses on how the different metallic device design length scales’ interplay (macro, micro, and nano) affects the bone response and how its understanding may affect the next generation of metallic device designing for osseointegration.

Keywords

Osseointegration Implant Bone Surface 

Notes

Acknowledgments

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant # 309475/2014-7.

References

  1. Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J (2004) Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res 15:381–392CrossRefPubMedGoogle Scholar
  2. Abrahamsson I, Linder E, Lang NP (2009) Implant stability in relation to osseointegration: an experimental study in the labrador dog. Clin Oral Implants Res 20:313–318CrossRefGoogle Scholar
  3. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10(Suppl 2):S96–101PubMedCentralPubMedGoogle Scholar
  4. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170CrossRefGoogle Scholar
  5. Baldassarri M, Bonfante E, Suzuki M, Marin C, Granato R, Tovar N, Coelho PG (2012) Mechanical properties of human bone surrounding plateau root form implants retrieved after 0.3–24 years of function. J Biomed Mater Res B Appl Biomater 100:2015–2021CrossRefGoogle Scholar
  6. Barber AJ, Butterworth CJ, Rogers SN (2011) Systematic review of primary osseointegrated dental implants in head and neck oncology. Br J Oral Maxillofac Surg 49:29–36CrossRefPubMedGoogle Scholar
  7. Bashutski JD, D’Silva NJ, Wang H-L (2009) Implant compression necrosis: current understanding and case report. J Periodontol 80:700–704CrossRefGoogle Scholar
  8. Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB (1998) Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23:275–281CrossRefGoogle Scholar
  9. Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 14:251–262CrossRefGoogle Scholar
  10. Bonfante EA, Granato R, Marin C, Suzuki M, Oliveira SR, Giro G, Coelho PG (2011) Early bone healing and biomechanical fixation of dual acid-etched and as-machined implants with healing chambers: an experimental study in dogs. Int J Oral Maxillofac Implants 26:75–82Google Scholar
  11. Bonfante EA, Granato R, Marin C, Jimbo R, Giro G, Suzuki M, Coelho PG (2013a) Biomechanical testing of microblasted, acid-etched/microblasted, anodized, and discrete crystalline deposition surfaces: an experimental study in beagle dogs. Int J Oral Maxillofac Implants 28:136–142CrossRefGoogle Scholar
  12. Bonfante EA, Janal MN, Granato R, Marin C, Suzuki M, Tovar N, Coelho PG (2013b) Buccal and lingual bone level alterations after immediate implantation of four implant surfaces: a study in dogs. Clin Oral Implants Res 24:1375–1380CrossRefGoogle Scholar
  13. Bosshardt DD, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Lang NP (2011) The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man. Clin Oral Implants Res 22:357–364CrossRefGoogle Scholar
  14. Bothe R, Beaton L, Davenport H (1940) Reaction of bone to multiple metallic implants. Surg Gynecol Obstet 71:598–602Google Scholar
  15. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16:1–132Google Scholar
  16. Browaeys H, Dierens M, Ruyffelaert C, Matthijs C, De Bruyn H, Vandeweghe S (2014) Ongoing crestal bone loss around implants subjected to computer-guided flapless surgery and immediate loading using the all-on-4® concept. Clin Implant Dent Relat Res 2015 Oct;17(5):831–843. doi: 10.1111/cid.12197CrossRefGoogle Scholar
  17. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH (1997) Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12:6–15CrossRefGoogle Scholar
  18. Burr DB, Turner CH, Naick P, Forwood MR, Ambrosius W, Sayeed Hasan M, Pidaparti R (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31:337–345CrossRefGoogle Scholar
  19. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG (2004) Enhanced bone apposition to a chemically modified sla titanium surface. J Dent Res 83:529–533CrossRefGoogle Scholar
  20. Campos FE, Gomes JB, Marin C, Teixeira HS, Suzuki M, Witek L, Zanetta-Barbosa D, Coelho PG (2012) Effect of drilling dimension on implant placement torque and early osseointegration stages: an experimental study in dogs. J Oral Maxillofac Surg 70:e43–e50CrossRefGoogle Scholar
  21. Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling. Experimental research on wolff’s law. J Biomech 5:173–180CrossRefGoogle Scholar
  22. Chowdhary R, Halldin A, Jimbo R Wennerberg A (2013) Influence of micro threads alteration on osseointegration and primary stability of implants: an fea and in vivo analysis in rabbits. Clin Implant Dent Relat Res 2015 Jun;17(3):562–569. doi: 10.1111/cid.12143CrossRefGoogle Scholar
  23. Coelho PG, Jimbo R (2014) Osseointegration of metallic devices: current trends based on implant hardware design. Arch Biochem Biophys 561:99–108CrossRefGoogle Scholar
  24. Coelho PG, Takayama T, Yoo D, Jimbo R, Karunagaran S, Tovar N, Janal MN, Yamano S. Bone. (2014) Nanometer-scale features on micrometer-scale surface texturing: a bone histological, gene expression, and nanomechanical study. Aug;65:25–32. doi: 10.1016/j.bone.2014.05.004CrossRefGoogle Scholar
  25. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, Thompson VP, Lemons JE (2009a) Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 88:579–596CrossRefGoogle Scholar
  26. Coelho PG, Marin C, Granato R, Suzuki M (2009b) Histomorphologic analysis of 30 plateau root form implants retrieved after 8 to 13 years in function. A human retrieval study. J Biomed Mater Res B Appl Biomater 91:975–979CrossRefGoogle Scholar
  27. Coelho PG, Bonfante EA, Marin C, Granato R, Giro G, Suzuki M (2010a) A human retrieval study of plasma-sprayed hydroxyapatite-coated plateau root form implants after 2 months to 13 years in function. J Long Term Eff Med Implants 20:335–342CrossRefGoogle Scholar
  28. Coelho PG, Granato R, Marin C, Bonfante EA, Janal MN, Suzuki M (2010b) Biomechanical and bone histomorphologic evaluation of four surfaces on plateau root form implants: an experimental study in dogs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:e39–e45CrossRefGoogle Scholar
  29. Coelho PG, Marin C, Granato R, Bonfante EA, Lima CP, Suzuki M (2010c) Surface treatment at the cervical region and its effect on bone maintenance after immediate implantation: an experimental study in dogs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:182–187CrossRefGoogle Scholar
  30. Coelho PG, Suzuki M, Guimaraes MV, Marin C, Granato R, Gil JN, Miller RJ (2010d) Early bone healing around different implant bulk designs and surgical techniques: a study in dogs. Clin Implant Dent Relat Res 12:202–208Google Scholar
  31. Coelho PG, Granato R, Marin C, Teixeira HS, Suzuki M, Valverde GB, Janal MN, Lilin T, Bonfante EA (2011) The effect of different implant macrogeometries and surface treatment in early biomechanical fixation: an experimental study in dogs. J Mech Behav Biomed Mater 4:1974–1981CrossRefGoogle Scholar
  32. Coelho PG, Marin C, Teixeira HS, Campos FE, Gomes JB, Guastaldi F, Anchieta RB, Silveira L, Bonfante EA (2013) Biomechanical evaluation of undersized drilling on implant biomechanical stability at early implantation times. J Oral Maxillofac Surg 71:e69–e75CrossRefGoogle Scholar
  33. Coelho PG, Teixeira HS, Marin C, Witek L, Tovar N, Janal MN, Jimbo R (2014) The in vivo effect of p-15 coating on early osseointegration. J Biomed Mater Res B Appl Biomater 102:430–440CrossRefGoogle Scholar
  34. Coelho PG, Jimbo R, Tovar N, Bonfante EA (2015) Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent Mater 31:37–52CrossRefGoogle Scholar
  35. De Bruyn H, Raes F, Cooper LF, Reside G, Garriga JS, Tarrida LG, Wiltfang J, Kern M (2013) Three-years clinical outcome of immediate provisionalization of single osseospeed() implants in extraction sockets and healed ridges. Clin Oral Implants Res 24:217–223CrossRefGoogle Scholar
  36. Deporter DA, Kermalli J, Todescan R, Atenafu E (2012) Performance of sintered, porous-surfaced, press-fit implants after 10 years of function in the partially edentulous posterior mandible. Int J Periodontics Restorative Dent 32:563–570Google Scholar
  37. Eriksson RA, Albrektsson T, Magnusson B (1984) Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 18:261–268CrossRefGoogle Scholar
  38. Esposito M, Grusovin MG, Achille H, Coulthard P, Worthington HV (2009) Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev 2009: CD003878Google Scholar
  39. Esposito M, Grusovin MG, Maghaireh H, Worthington HV (2013) Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev 3:CD003878Google Scholar
  40. Freitas AC Jr, Bonfante EA, Giro G, Janal MN, Coelho PG (2012) The effect of implant design on insertion torque and immediate micromotion. Clin Oral Implants Res 23:113–118CrossRefGoogle Scholar
  41. Gil LF, Suzuki M, Janal MN, Tovar N, Marin C, Granato R, Bonfante EA, Jimbo R, Gil JN, Coelho PG (2014) Progressive plateau root form dental implant osseointegration: a human retrieval study. J Biomed Mater Res B Appl Biomater 103:1328–1332CrossRefGoogle Scholar
  42. Giro G, Marin C, Granato R, Bonfante EA, Suzuki M, Janal MN, Coelho PG (2011) Effect of drilling technique on the early integration of plateau root form endosteal implants: an experimental study in dogs. J Oral Maxillofac Surg 69:2158–2163CrossRefGoogle Scholar
  43. Giro G, Tovar N, Marin C, Bonfante EA, Jimbo R, Suzuki M, Janal MN, Coelho PG (2013) The effect of simplifying dental implant drilling sequence on osseointegration: an experimental study in dogs. Int J Biomater 2013:230310CrossRefPubMedGoogle Scholar
  44. Gomes JB, Campos FE, Marin C, Teixeira HS, Bonfante EA, Suzuki M, Witek L, Zanetta-Barbosa D, Coelho PG (2013) Implant biomechanical stability variation at early implantation times in vivo: an experimental study in dogs. Int J Oral Maxillofac Implants 28:e128–e134CrossRefGoogle Scholar
  45. Gottlow J, Barkarmo S, Sennerby L (2012) An experimental comparison of two different clinically used implant designs and surfaces. Clin Implant Dent Relat Res 14:e204–e212CrossRefGoogle Scholar
  46. Halldin A, Jimbo R, Johansson CB, Wennerberg A, Jacobsson M, Albrektsson T, Hansson S (2011) The effect of static bone strain on implant stability and bone remodeling. Bone 49:783–789CrossRefGoogle Scholar
  47. Huang H-L, Chang Y-Y, Lin D-J, Li Y-F, Chen K-T, Hsu J-T (2011) Initial stability and bone strain evaluation of the immediately loaded dental implant: an in vitro model study. Clin Oral Implants Res 22:691–698CrossRefGoogle Scholar
  48. Iezzi G, Vantaggiato G, Shibli JA, Fiera E, Falco A, Piattelli A, Perrotti V (2012) Machined and sandblasted human dental implants retrieved after 5 years: a histologic and histomorphometric analysis of three cases. Quintessence Int 43:287–292Google Scholar
  49. Iezzi G, Piattelli A, Mangano C, Shibli JA, Vantaggiato G, Frosecchi M, Di Chiara C, Perrotti V (2014) Peri-implant bone tissues around retrieved human implants after time periods longer than 5 years: a retrospective histologic and histomorphometric evaluation of 8 cases. Odontology 102:116–121CrossRefGoogle Scholar
  50. Isidor F (2006) Influence of forces on peri-implant bone. Clin Oral Implants Res 17:8–18CrossRefGoogle Scholar
  51. Iyer S, Weiss C, Mehta A (1997a) Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part I: relationship between drill speed and heat production. Int J Prosthodont 10:411–414Google Scholar
  52. Iyer S, Weiss C, Mehta A (1997b) Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part II: relationship between drill speed and healing. Int J Prosthodont 10:536–540Google Scholar
  53. Javed F, Romanos GE (2010) The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 38:612–620CrossRefGoogle Scholar
  54. Jimbo R, Sawase T, Shibata Y, Hirata K, Hishikawa Y, Tanaka Y, Bessho K, Ikeda T, Atsuta M (2007) Enhanced osseointegration by the chemotactic activity of plasma fibronectin for cellular fibronectin positive cells. Biomaterials 28:3469–3477CrossRefGoogle Scholar
  55. Jimbo R, Coelho PG, Bryington M, Baldassarri M, Tovar N, Currie F, Hayashi M, Janal MN, Andersson M, Ono D, Vandeweghe S, Wennerberg A (2012) Nano hydroxyapatite-coated implants improve bone nanomechanical properties. J Dent Res 91:1172–1177CrossRefGoogle Scholar
  56. Jimbo R, Anchieta R, Baldassarri M, Granato R, Marin C, Teixeira HS, Tovar N, Vandeweghe S, Janal MN, Coelho PG (2013a) Histomorphometry and bone mechanical property evolution around different implant systems at early healing stages. Implant Dent 22:596–603CrossRefGoogle Scholar
  57. Jimbo R, Giro G, Marin C, Granato R, Suzuki M, Tovar N, Lilin T, Janal M, Coelho PG (2013b) Simplified drilling technique does not decrease dental implant osseointegration: a preliminary report. J Periodontol 84:1599–1605Google Scholar
  58. Jimbo R, Tovar N, Yoo DY, Janal MN, Anchieta RB, Coelho PG (2013c) The effect of different surgical drilling procedures on full laser-etched microgrooves surface-treated implants: an experimental study in sheep. Clin Oral Implants Res 25:1072–1077CrossRefGoogle Scholar
  59. Jimbo R, Andersson M, Vandeweghe S (2014a) Nano in implant dentistry. Int J Dent 2014:314819CrossRefPubMedGoogle Scholar
  60. Jimbo R, Tovar N, Marin C, Teixeira HS, Anchieta RB, Silveira LM, Janal MN, Shibli JA, Coelho PG (2014b) The impact of a modified cutting flute implant design on osseointegration. Int J Oral Maxillofac Surg 43:883–888CrossRefGoogle Scholar
  61. Leonard G, Coelho P, Polyzois I, Stassen L, Claffey N (2009) A study of the bone healing kinetics of plateau versus screw root design titanium dental implants. Clin Oral Implants Res 20:232–239CrossRefGoogle Scholar
  62. Leventhal GS (1951) Titanium, a metal for surgery. J Bone Joint Surg Am 33-A:473–474CrossRefGoogle Scholar
  63. Lindstrom J, Branemark PI, Albrektsson T (1981) Mandibular reconstruction using the preformed autologous bone graft. Scand J Plast Reconstr Surg 15:29–38CrossRefGoogle Scholar
  64. Mangano C, Perrotti V, Raspanti M, Mangano F, Luongo G, Piattelli A, Iezzi G (2013) Human dental implants with a sandblasted, acid-etched surface retrieved after 5 and 10 years: a light and scanning electron microscopy evaluation of two cases. Int J Oral Maxillofac Implants 28:917–920CrossRefGoogle Scholar
  65. Marin C, Granato R, Suzuki M, Gil JN, Janal MN, Coelho PG (2010) Histomorphologic and histomorphometric evaluation of various endosseous implant healing chamber configurations at early implantation times: a study in dogs. Clin Oral Implants Res 21:577–583CrossRefGoogle Scholar
  66. Norton M (2013) Primary stability versus viable constraint – a need to redefine. Int J Oral Maxillofac Implants 28:19–21Google Scholar
  67. Oh TJ, Yoon J, Misch CE, Wang HL (2002) The causes of early implant bone loss: myth or science? J Periodontol 73:322–333CrossRefGoogle Scholar
  68. Petrie CS, Williams JL (2005) Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. Clin Oral Implants Res 16:486–494CrossRefGoogle Scholar
  69. Raghavendra S, Wood MC, Taylor TD (2005) Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 20:425–431Google Scholar
  70. Richards RG, Moriarty TF, Miclau T, McClellan RT, Grainger DW. Advances in biomaterials and surface technologies. J Orthop Trauma 2012;26:703–707.CrossRefGoogle Scholar
  71. Sharawy M, Misch CE, Weller N, Tehemar S (2002) Heat generation during implant drilling: the significance of motor speed. J Oral Maxillofac Surg 60:1160–1169CrossRefGoogle Scholar
  72. Shigehara S, Ohba S, Nakashima K, Takanashi Y, Asahina I (2014) Immediate loading of dental implants inserted in edentulous maxillas and mandibles; 5-year results of a clinical study. J Oral Implantol 16:411–415Google Scholar
  73. Suzuki M, Calasans-Maia MD, Marin C, Granato R, Gil JN, Granjeiro JM, Coelho PG (2010) Effect of surface modifications on early bone healing around plateau root form implants: an experimental study in rabbits. J Oral Maxillofac Surg 68:1631–1638CrossRefGoogle Scholar
  74. Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15:60–67CrossRefGoogle Scholar
  75. Vervaeke S, Collaert B, De Bruyn H (2013) The effect of implant surface modifications on survival and bone loss of immediately loaded implants in the edentulous mandible. Int J Oral Maxillofac Implants 28:1352–1357CrossRefGoogle Scholar
  76. Witek L, Marin C, Granato R, Bonfante EA, Campos FE, Gomes JB, Suzuki M, Coelho PG (2013) Surface characterization, biomechanical, and histologic evaluation of alumina and bioactive resorbable blasting textured surfaces in titanium implant healing chambers: an experimental study in dogs. Int J Oral Maxillofac Implants 28:694–700CrossRefGoogle Scholar
  77. Yeniyol S, Jimbo R, Marin C, Tovar N, Janal MN, Coelho PG (2013) The effect of drilling speed on early bone healing to oral implants. Oral Surg Oral Med Oral Pathol Oral Radiol 116:550–555CrossRefGoogle Scholar
  78. Yoshida K1, Uoshima K, Oda K, Maeda T. (2009) Influence of heat stress to matrix on bone formation. Clin Oral Implants Res. Aug;20(8):782–90. doi: 10.1111/j.1600-0501.2008.01654.x.Google Scholar
  79. Zizic TM, Marcoux C, Hungerford DS, Dansereau JV, Stevens MB (1985) Corticosteroid therapy associated with ischemic necrosis of bone in systemic lupus erythematosus. Am J Med 79:596–604CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paulo G. Coelho
    • 1
  • Estevam A. Bonfante
    • 2
    Email author
  • Ryo Jimbo
    • 3
  1. 1.Department of Biomaterials and Biomimetics, Hansjörg Wyss Department of Plastic SurgeryNYU College of Dentistry, NYU Langone Medical Center, 433 1st ave room 844New YorkUSA
  2. 2.Department of Prosthodontics and PeriodontologyBauru School of Dentistry – University of São PauloBauruBrazil
  3. 3.Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of OdontologyMalmö UniversityMalmoSweden

Personalised recommendations