Guided Bone Regeneration for Aesthetic Implant Site Development



Achieving ideal aesthetics with bone augmentation for implant site development is often elusive. Numerous techniques, protocols, and materials in guided bone regeneration (GBR) have been described to manage compromised sites of varying severity. The protocols and techniques employed should be predictable, minimally invasive, aesthetic, and lasting. This evidence-based discussion will describe the latest techniques for GBR for aesthetic site development of the compromised implant site. Topics to be covered include patient evaluation and strategies for dealing with the horizontally and vertically deficient ridge. This chapter will also focus on the most current strategies in minimally invasive bone grafting and tissue management to improve long-term clinical success with dental implants, specifically in the aesthetic zone.


Guided bone regeneration Bone augmentation Tissue augmentation Bone grafts GBR Implant site development Dental implants 


  1. Aghaloo TL, Moy PK (2007) Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants 22(Suppl):49–70Google Scholar
  2. Al-Nawas B, Schiegnitz E (2014) Augmentation procedures using bone substitute materials or autogenous bone – a systematic review and meta-analysis. Eur J Oral Implantol 7(Suppl 2):S219–S234PubMedGoogle Scholar
  3. Araújo M, Linder E, Wennström J, Lindhe J (2008) The influence of Bio-Oss Collagen on healing an extraction socket: an experimental study in the dog. Int J Periodontics Restor Dent 28:123–135Google Scholar
  4. Araújo M, Linder E, Lindhe J (2009) Effect of a xenograft on early bone formation in extraction sockets: an experimental study in dog. Clin Oral Implants Res 20:1–6CrossRefGoogle Scholar
  5. Belser UC, Schmid B, Higginbottom F et al (2004) Outcome analysis of implant restorations located in the anterior maxilla: a review of the recent literature. Int J Oral Maxillofac Implants 19:30Google Scholar
  6. Block MS, Baughman DG (2005) Reconstruction of severe maxillary defects using distraction osteogenesis, bone grafts, and implants. J Oral Maxillofac Surg 63:291–297CrossRefGoogle Scholar
  7. Block MS, Degen M (2004) Horizontal ridge augmentation using human mineralized particulate bone: preliminary results. Oral Maxillofac Surg 62:67–72CrossRefGoogle Scholar
  8. Block M, Haggerty C (2009) Interpositional osteotomy for posterior mandible ridge augmentation. J Oral Maxillofac Surg 67:31–39CrossRefGoogle Scholar
  9. Block M, Finger I, Lytle R (2002) Human mineralized bone in extraction sites before implant placement: preliminary results. J Amer Dent Assoc 133:1631–1638CrossRefGoogle Scholar
  10. Bunyaratavej P, Wang HL (2001) Collagen membranes: a review. J Periodontol 72:215–229CrossRefGoogle Scholar
  11. Buser D, Hoffmann B, Bernard JP, Lussi A, Mettler D, Schenk RK (1998) Evaluation of filling materials in membrane-protected bone defects. a comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 9:137–150CrossRefGoogle Scholar
  12. Chiapasco MI, Zaniboni M (2009) Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin Oral Implants Res 20(Suppl 4):113–123CrossRefGoogle Scholar
  13. Christgau M, Bader N, Schmalz G, Hiller KA, Wenzel A (1998) GTR therapy of intrabony defects using 2 different bioabsorbable membranes: 12 month results. J Clin Periodontol 25:499–509CrossRefGoogle Scholar
  14. Covani U, Cornelini R, Barone A (2008) Buccal bone augmentation around immediate implants with and without flap elevation: a modified approach. Int J Oral Maxillofac Implants 23:841PubMedGoogle Scholar
  15. Frost HM (1983) The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 31:3–9PubMedGoogle Scholar
  16. Froum S, Wallace S, Elian N et al (2006) Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation histomorphometry at 26 to 32 weeks after grafting. Int J Perio Restor Dent 26:543–551Google Scholar
  17. Froum SJ et al (2008) Distraction osteogenesis for ridge augmentation: prevention and treatment of complications. Thirty case reports. Int J Periodontics Restor Dent 28:337–345Google Scholar
  18. Gielkens P, Bos R, Raghoebar G et al (2007) Is there evidence that barrier membranes prevent bone resorption in autologous bone grafts during the healing period? A systemic review. Int Oral Maxillofac Implants 22:390–398Google Scholar
  19. Gutta R, Baker RA, Bartolucci AA, Louis PJ (2009) Barrier membranes used for ridge augmentation: is there an optimal pore size? JOMS 67(6):1218–1225Google Scholar
  20. Hammerle CH, Jung RE, Feloutzis A (2002) A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J Clin Periodontol 29(Suppl 3):226–231CrossRefGoogle Scholar
  21. Hardwick R, Scantlebury TV, Sanchez R et al (1994). Membrane design criteria for guided bone regeneration of the alveolar ridge In: Buser D, Dahlin C, Schenk RK, eds. Guided Bone Regeneration in Implant Dentistry. Chicago, Berlin: Quintessence, pp. 101–136.Google Scholar
  22. Jensen OT (2006) Alveolar segmental sandwich osteotomy for anterior maxillary vertical augmentation prior to implant placement. J Oral Maxillofac Surg 64:290–296CrossRefGoogle Scholar
  23. Jensen OT (2014) Segmental alveolar split combined with dental extractions and osteotome sinus floor intrusion in posterior maxilla using BMP-2/ACS allograft for alveolar reconstruction: technical note and report of three cases. J Oral Maxillofac Surg 71:2040–2047CrossRefGoogle Scholar
  24. Jensen OT, Cockrell R, Kuhike L et al (2002) Anterior maxillary alveolar distraction osteogenesis: a prospective 5-year clinical study. Int J Oral Maxillofac Implants 17:52PubMedGoogle Scholar
  25. Jensen SS, Bosshardt DD, Gruber R, Buser D (2014) Long-term stability of contour augmentation in the esthetic zone. Histologic and histomorphometric evaluation of 12 human biopsies 14 to 80 months after augmentation. J Periodontol 10:1–15Google Scholar
  26. Kan JY, Rungcharassaeng K, Sclar A, Lozada JL (2007) Effects of the facial osseous defect morphology on gingival dynamics after immediate tooth replacement and guided bone regeneration: 1-year results. J Oral Maxillofac Surg 65:13–19CrossRefGoogle Scholar
  27. Keller EE, Tolman DE, Eckert S (1999) Surgical-prosthodontic reconstruction of advanced maxillary bone compromise with autogenous onlay block grafts and osseointegrated implants: a 12 year study of 32 consecutive patients. Int J Oral Maxillofac Implants 14:197–209PubMedGoogle Scholar
  28. Klug CN et al (2001) Preprosthetic vertical distraction osteogenesis of the mandible using an L-shaped osteotomy and titanium membranes for guided bone regeneration. J Oral Maxillofac Surg 59:1302–1308CrossRefGoogle Scholar
  29. Laurell L, Falk H, Fornell J, Johard G, Gottlow J (1994) Clinical use of bioabsorbable matrix barrier in guided tissue regeneration therapy. J Periodontol 65:967–975CrossRefGoogle Scholar
  30. Le BT (2009) Effectiveness of single-staged implant placement with simultaneous grafting using mineralized allograft. J Oral Maxillofac Surg 67(Suppl 1):57CrossRefGoogle Scholar
  31. Le B. Management of the ailing implant: an innovative technique for the treatment of labial gingival recession around dental implants. Abstract. AAOMS Annual Meeting, 2014Google Scholar
  32. Le BT, Borzabadi-Farahani A (2012) Labial bone thickness in area of anterior maxillary implants associated with crestal labial soft tissue thickness. Implant Dent 21:406–410CrossRefGoogle Scholar
  33. Le BT, Borzabadi-Farahani A. Simultaneous implant placement and bone grafting with particulate mineralized allograft in sites with buccal wall defects,a 3-year follow-up and review of literature. Journal of Cranio-Maxillofacial Surgery. 2014;42(5):552–9CrossRefGoogle Scholar
  34. Le B, Burstein J (2008a) Esthetic grafting for small volume hard and soft tissue contour defects for implant site development. Implant Dent 17:136–141CrossRefGoogle Scholar
  35. Le B, Burstein J (2008b) Cortical tenting grafting technique in the severely atrophic alveolar ridge for implant site preparation. Implant Dent 17:40–50CrossRefGoogle Scholar
  36. Le BT, Rohrer MD, Prassad HS (2010) Screw “tent-pole” grafting technique for reconstruction of large vertical alveolar ridge defects using human mineralized allograft for implant site preparation. J Oral Maxillofac Surg 68:428–435CrossRefGoogle Scholar
  37. Le BT, Borzabadi-Farahani A, Pluemsakunthai W (2014) Is buccolingual angulation of maxillary anterior implants associated with the crestal labial soft tissue thickness? Int J Oral Maxillofac Surg 43:874–878CrossRefGoogle Scholar
  38. Le B, Borzabadi-Farahani A, Nielsen B (2016) Treatment of labial soft tissue recession around dental implants in the esthetic zone using guided bone regeneration with mineralized allograft: a retrospective clinical case series. J Oral Maxillofac Surg 74:1552–1561CrossRefGoogle Scholar
  39. Louis PJ, Gutta R, Said-Al-Naief N et al (2008) Reconstruction of the maxilla and mandible with particulate bone graft and titanium mesh for implant placement. J Oral Maxillofac Surg 66:235–245CrossRefGoogle Scholar
  40. Lundgren AK, Lundgren D, Hämmerle CH, Nyman S, Sennerby L (2000) Influence of decortication of the donor bone on guided bone augmentation. An experimental study in the rabbit skull bone. Clin Oral Implants Res 11(2):99–106CrossRefGoogle Scholar
  41. Machtei EE (2001) The effect of membrane exposure on the outcome of regenerative procedures in humans: a meta-analysis. J Periodontol 72:512–516CrossRefGoogle Scholar
  42. Marx RE, Shellenberger T, Wimsatt J, Correa P (2002) Severely resorbed mandible: predictable reconstruction with soft tissue matrix expansion (tent pole) grafts. J Oral Maxillofac Surg 60:878–888CrossRefGoogle Scholar
  43. Misch CM (1997) Comparison of intraoral donor sites for onlay grafting prior to implant placement. Int J Oral Maxillofac Implants 12:767–776Google Scholar
  44. Molly L, Vandromme H, Quirynen M et al (2008) Bone formation following implantation of bone biomaterials into extraction sites. J Perio 79:1108–1115CrossRefGoogle Scholar
  45. Murphy KG (1995) Postoperative healing complications associated with Gore-tex periodontal material. Part II. Effect of complications on regeneration. Int J Perio Restor Dent 15:548–561Google Scholar
  46. Nishimura I, Shimizu Y, Ooya K (2004) Effects of cortical bone perforation on experimental guided bone regeneration. Clin Oral Implants Res 15:293–300CrossRefGoogle Scholar
  47. Pallesen L, Schou S, Aaboe M, Hjørting-Hansen E, Nattestad A, Melsen F (2002) Influence of particle size of autogenous bone grafts on the early stages of bone regeneration: a histologic and stereologic study in rabbit calvarium. Int J Oral Maxillofac Implants 17:498–506PubMedGoogle Scholar
  48. Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A (1999) Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants 14:835–840PubMedGoogle Scholar
  49. Pietrokovski J, Massler M (1967) Alveolar ridge resorption following tooth extraction. J Prosthet Dent 17:21–27CrossRefGoogle Scholar
  50. Pluemsakunthai W, Le BT, Kasugai S. Alveolar Ridge Alteration Following Immediate Implant Placement in Different Buccal Gap Distance: a microcomputed tomography analysis in dogs. Implant Dent. 2015;24(1):70–6Google Scholar
  51. Roccuzzo M et al (2004) Vertical alveolar ridge augmentation by means of a titanium mesh and autogenous bone grafts. Clin Oral Implants Res 15:73–81CrossRefGoogle Scholar
  52. Rominger JW, Triplett RG (1994) The use of guided tissue regeneration to improve implant osseointegration. J Oral Maxillofac Surg 52(2):106–112CrossRefGoogle Scholar
  53. Schenk RK, Buser D, Hardwick WR, Dahlin C (1994) Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants 9:13–29PubMedGoogle Scholar
  54. Schwartz Z, Mellonig JT, Carnes DL Jr, de la Fontaine J, Cochran DL, Dean DD, Boyan BD (1996) Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol 67:918–926CrossRefGoogle Scholar
  55. Schwartz Z, Weesner T, van Dijk S et al (2007) Ability of deproteinized cancellous bovine bone to induce new bone formation. J Periodontal 71:1258–1269CrossRefGoogle Scholar
  56. Sculean A, Nikolidakis D, Schwarz F (2008) Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials – biological foundation and preclinical evidence: a systematic review. J Clin Periodontol 35(Suppl 8):106–116CrossRefGoogle Scholar
  57. Shigeyama Y, D’Errico JA, Stone R, Somerman MJ (1995) Commercially-prepared allograft material has biological activity in vitro. J Periodontol 66:478–487CrossRefGoogle Scholar
  58. Simion M, Fontana F, Rasperini G et al (2007) Vertical ridge augmentation by expanded polytetrafluoroethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone (Bio Oss). Clin Oral Implants Res 18:620–629CrossRefGoogle Scholar
  59. Slotte C, Lundgren D, Sennerby L, Lundgren AK (2003) Surgical intervention in enchondral and membranous bone: intraindividual comparisons in the rabbit. Clin Implant Dent Relat Res 5:263–268CrossRefGoogle Scholar
  60. Spray JR et al (2000) The influence of bone thickness on facial marginal bone response: stage 1 placement through stage 2 uncovering. Ann Periodontol 5:119–128CrossRefGoogle Scholar
  61. Wang HL, Boyapati L (2006) “PASS” principles for predictable bone regeneration. Implant Dent 15:8CrossRefGoogle Scholar
  62. Wang HL, Tsao YP (2007) Mineralized bone allograft-plug socket augmentation: rationale and technique. Implant Dent 16:33–41CrossRefGoogle Scholar
  63. Wenz B, Oesch B, Horst M (2001) Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials 22:1599–1606CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Oral & Maxillofacial SurgeryThe Herman Ostrow School of Dentistry of USC, USC Medical CenterLos AngelesUSA

Personalised recommendations