Advertisement

Computational Biosensors: Molecules, Algorithms, and Detection Platforms

  • Elebeoba E. May
  • Jason C. Harper
  • Susan M. Brozik
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 9)

Abstract

Advanced nucleic acid-based sensor-applications require computationally intelligent biosensors that are able to concurrently perform complex detection and classification of samples within an in vitro platform. Realization of these cutting-edge computational biosensor systems necessitates innovation and integration of three key technologies: molecular probes with computational capabilities, algorithmic methods to enable in vitro computational post processing and classification, and immobilization and detection approaches that enable the realization of deployable computational biosensor platforms. We provide an overview of current technologies, including our contributions towards the development of computational biosensor systems.

Keywords

Biomolecular logic systems Digital biosensors DNA computing Computational biosensors Intelligent biosensor Application- and Substrate-specific algorithms DNA detection Deoxyribozymes Enzymes 

Notes

Acknowledgements

We would like to thank our colleagues who collaborated on our original computational biosensor work: P. Dolan, P. Crozier, M. Lee, M. Manginell, and R. Polsky.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

  1. 1.
    Adar R, Benenson Y, Linshiz G, Rosner A, Tishby N, Shapiro E (2004) Stochastic computing with biomolecular automata. Proc Natl Acad Sci USA 101(27):9960–9965CrossRefGoogle Scholar
  2. 2.
    Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(5187):1021–1024CrossRefGoogle Scholar
  3. 3.
    Adleman L, Rothemund P, Roweis S, Winfree E (1999) On applying molecular computation to the data encryption standard. J Comput Biol 6(1):53–63MATHCrossRefGoogle Scholar
  4. 4.
    Andle JC, Vetelino JF (1994) Acoustic wave biosensors. Sens Actuators A 44(3):167–176CrossRefGoogle Scholar
  5. 5.
    Arugula MA, Zhang Y, Simonian AL (2014) Biosensors as 21st century technology for detecting genetically modified organisms in food and feed. Anal Chem 86(1):119–129CrossRefGoogle Scholar
  6. 6.
    Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) Elementary arithmetic operations by enzymes: a model for metabolic pathway based computing. Angewandte Chemie-International Edition 45(10):1572–1576CrossRefGoogle Scholar
  7. 7.
    Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) Logic gates and elementary computing by enzymes. J Phys Chem A 110(27):8548–8553CrossRefGoogle Scholar
  8. 8.
    Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429(6990):423–429CrossRefGoogle Scholar
  9. 9.
    Beissenhirtz MK, Elnathan R, Weizmann Y, Willner I (2007) The aggregation of Au nanoparticles by an autonomous DNA machine detects viruses. Small 3(3):375–397CrossRefGoogle Scholar
  10. 10.
    Bevilaqua A, Rodrigues F (2011) L. do Amaral. SNPs classification: building biological high-level knowledge using genetic algorithms. Integrated computing technology communications in computer and information. Science 165:50–58Google Scholar
  11. 11.
    Bisoffi M, Hjelle B, Brown DC, Branch DW, Edwards TL, Brozik SM, Bondu-Hawkins VS, Larson RS (2008) Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosens Bioelectron 23(9):1397–1403CrossRefGoogle Scholar
  12. 12.
    Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296(5567):499–502CrossRefGoogle Scholar
  13. 13.
    Branch DW, Brozik SM (2004) Low-level detection of Bacillus anthracis simulant using love-wave biosensors on 36°YX LiTaO3. Biosens Bioelectron 19(8):849–859CrossRefGoogle Scholar
  14. 14.
    Breaker RR (1997) DNA enzymes. Nat Biotechnol 15(5):427–431CrossRefGoogle Scholar
  15. 15.
    Bunde RL, Jarvi EJ, Rosentreter JJ (1998) Piezoelectric quartz crystal biosensors. Talanta 46(6):1223–1236CrossRefGoogle Scholar
  16. 16.
    Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28(15):2380–2392CrossRefGoogle Scholar
  17. 17.
    Carter J, Balaraman V, Kucharski C, Fraser T, Fraser M (2013) A novel dengue virus detection method that couples DNAzyme and gold nanoparticle approaches. Virol J 10:201CrossRefGoogle Scholar
  18. 18.
    Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New YorkMATHCrossRefGoogle Scholar
  19. 19.
    Du J, Harding GL, Ogilvy JA, Dencher PR, Lake M (1996) A study of love-wave acoustic sensors. Sens Actuators, A 56(3):211–219CrossRefGoogle Scholar
  20. 20.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012CrossRefGoogle Scholar
  21. 21.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797CrossRefGoogle Scholar
  22. 22.
    Edmonds J (1965) Paths, trees and flowers. Can J Math 17:449–467MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Edwards TL, Harper JC, Polsky R, Lopez DM, Wheeler DR, Allen AC, Brozik SM (2011) A parallel microfluidic channel fixture fabricated using laser ablated plastic laminates for electrochemical and chemiluminescent biodetection of DNA. Biomicrofluidics 5:044115CrossRefGoogle Scholar
  24. 24.
    Ellington AD, Szostak JW (1990) Invitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822CrossRefGoogle Scholar
  25. 25.
    Eppstein D (2003) Maximum cardinality matching in general graphsGoogle Scholar
  26. 26.
    Fan CH, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100(16):9134–9137CrossRefGoogle Scholar
  27. 27.
    Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, Subbu V, Spiro DJ, Sitz J, Koo H, Bolotov P, Dernovoy D, Tatusova T, Bao Y, St George K, Taylor J, Lipman DJ, Fraser CM, Taubenberger JK, Salzberg SL (2005) Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437(7062):1162–1166CrossRefGoogle Scholar
  28. 28.
    Hall B, Hesselberth J, Ellington A (2007) Computational selection of nucleic acid biosensors via a slip structure model. Biosens Bioelectron 22(9):1939–1947CrossRefGoogle Scholar
  29. 29.
    Harper JC, Polsky R, Wheeler DW, Dirk SM, Brozik SM (2007) Selective immobilization of DNA and antibody probes on electrode arrays: Simultaneous electrochemical detection of DNA and protein on a single platform. Langmuir 23(16):8285–8287CrossRefGoogle Scholar
  30. 30.
    He J, Zelikovsky A (2007) Informative SNP selection methods based on SNP prediction. IEEE Trans Nanobiosci 6(1):60–67CrossRefGoogle Scholar
  31. 31.
    Hockenberry AJ, Jewett MC (2012) Synthetic in vitro circuits. Curr Opin Chem Biol 16(3–4):253–259CrossRefGoogle Scholar
  32. 32.
    Hoheisel JD (2006) Microarray technology: Beyond transcript profiling and genotype analysis. Nat Rev Genet 7(3):200–210CrossRefGoogle Scholar
  33. 33.
    Horejsh D, Martini F, Poccia F, Ippolito G, Di Caro A, Capobianchi MR (2005) A molecular beacon, bead-based assay for the detection of nucleic acids by flow cytometry. Nucleic Acids Res 33(2):e13CrossRefGoogle Scholar
  34. 34.
    Hutchins CJ, Rathjen PD, Forster AC, Symons RH (1986) Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 14(9):3627–3640CrossRefGoogle Scholar
  35. 35.
    Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83(12):4440–4452CrossRefGoogle Scholar
  36. 36.
    Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors—An alternative to optical biosensors? Angewandte Chemie-International Edition 39(22):4004–4032CrossRefGoogle Scholar
  37. 37.
    Jhaveri S, Rajendran M, Ellington AD (2000) In vitro selection of signaling aptamers. Nat Biotechnol 18(12):1293–1297CrossRefGoogle Scholar
  38. 38.
    Johnston DH, Glasgow KC, Thorp HH (1995) Electrochemical measurement of solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. J Am Chem Soc 117(35):8933–8938CrossRefGoogle Scholar
  39. 39.
    Jung C, Ellington AD (2014) Diagnostic applications of nucleic acid circuits. Acc Chem Res 47(6):1825–1835CrossRefGoogle Scholar
  40. 40.
    Karamollaoglu I, Oktem HA, Mutlu M (2009) QCM-based DNA biosensor for detection of genetically modified organisms (GMOs). Biochem Eng J 44(2–3):142–150CrossRefGoogle Scholar
  41. 41.
    Kari L, Kari J, Landweber LF (1999) Reversible molecular computation in ciliates. In: Karhumaki J, Maurer H, Paun G, Rozenberg G (eds) Jewels are Forever. Contributions on theoretical computer science in honor of Arto Salomaa. Springer, Berlin, pp 353–363CrossRefGoogle Scholar
  42. 42.
    Katz E, Privman V (2010) Enzyme-based logic systems for information processing. Chem Soc Rev 39(5):1835–1857CrossRefGoogle Scholar
  43. 43.
    Kawde AN, Wang J (2004) Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis 16(1–2):101–107CrossRefGoogle Scholar
  44. 44.
    Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angewandte Chemie-International Edition 50(14):3124–3156CrossRefGoogle Scholar
  45. 45.
    Kudelski A (2008) Analytical applications of Raman spectroscopy. Talanta 76(1):1–8CrossRefGoogle Scholar
  46. 46.
    Landweber LF, Kari L (1999) The evolution of cellular computing: nature’s solution to a computational problem. Biosystems 52(1–3):3–13CrossRefGoogle Scholar
  47. 47.
    Long N, Gianola D, Rosa G, Weigel K, Avendano S (2009) Comparison of classification methods for detecting associations between SNPs and chick mortality. Gen Sel Evol 41:18CrossRefGoogle Scholar
  48. 48.
    Li X, Liao B, Cai L, Cao Z, Zhu W (2013) Informative SNPs Selection Based on Two-Locus and Multilocus Linkage Disequilibrium: Criteria of Max-Correlation and Min-Redundancy. IEEE/ACM Trans Comput Biol Bioinf 10(3):688–695CrossRefGoogle Scholar
  49. 49.
    Li D, Shlyahovsky B, Elbaz J, Willner I (2007) Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. J Am Chem Soc 129(18):5804–5805CrossRefGoogle Scholar
  50. 50.
    Lin SY, Probert W, Lo M, Desmond E (2004) Rapid detection of isoniazid and rifampin resistance mutations in Mycobacterium tuberculosis complex from cultures or smear-positive sputa by use of molecular beacons. J Clin Microbiol 42(9):4204–4208CrossRefGoogle Scholar
  51. 51.
    Liu X, Farmerie W, Schuster S, Tan W (2000) Molecular beacons for DNA biosensors with micrometer to submicrometer dimensions. Anal Biochem 283:56–63CrossRefGoogle Scholar
  52. 52.
    Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82(19):8131–8136CrossRefGoogle Scholar
  53. 53.
    Lund K, Manzo A, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic M, Walter N, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210CrossRefGoogle Scholar
  54. 54.
    Macdonald J, Li Y, Sutovic M, Lederman H, Pendri K, Lu WH, Andrews BL, Stefanovic D, Stojanovic MN (2006) Medium scale integration of molecular logic gates in an automaton. Nano Lett 6(11):2598–2603CrossRefGoogle Scholar
  55. 55.
    MacKerell AD Jr, Banavali N, Foloppe N (2001) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(4):257–265CrossRefGoogle Scholar
  56. 56.
    Maley CC (1998) DNA computation: theory, practice, and prospects. Evol Comput 6(3):201–229CrossRefGoogle Scholar
  57. 57.
    Mannelli I, Minunni M, Tombelli S, Mascini M (2003) Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. Biosens Bioelectron 18(2–3):129–140CrossRefGoogle Scholar
  58. 58.
    Mannelli I, Minunni M, Tombelli S, Wang R, Spiriti MM, Mascini M (2005) Direct immobilization of DNA probes for the development of affinity biosensors. Bioelectrochemistry 66(1–2):129–138CrossRefGoogle Scholar
  59. 59.
    Manor O, SegalPredicting E (2013) Disease Risk Using Bootstrap Ranking and Classification Algorithms. PLoS Comput Biol 9(8):e1003200CrossRefGoogle Scholar
  60. 60.
    Margulies D, Hamilton AD (2009) Digital analysis of protein properties by an ensemble of DNA quadruplexes. J Am Chem Soc 131(26):9142–1943CrossRefGoogle Scholar
  61. 61.
    Markert H, Ring J, Campbell N, Grates K (2011) A comparison of four commercially available portable Raman spectrometers. National Forensic Science Technology Center. http://www.nfstc.org/?dl_id=214
  62. 62.
    May E, Vouk M, Bitzer D, Rosnick D (2004) Coding theory based models for protein translation initiation in prokaryotic organisms. BioSyst J 76(1–3):249–260CrossRefGoogle Scholar
  63. 63.
    May E, Vouk M, Bitzer D (2006) An Error-Control Coding Model For Classification of Escherichia coli K-12 ribosome binding sites. IEEE EMB Mag 25(1):90–97Google Scholar
  64. 64.
    May EE, Dolan PL, Crozier PS, Brozik SM, Manginell M (2008) Towards de novo design of deoxyribozyme biosensors for GMO detection. IEEE Sens J 8(6):1011–1019CrossRefGoogle Scholar
  65. 65.
    May E, Lee M, Dolan P, Crozier P, Brozik S, Manginell M (2008b) Computational sensing and in vitro classification of GMOs and biomolecular events. In: Proceedings of the 26th army science conferenceGoogle Scholar
  66. 66.
    Mehlmann M, Dawson ED, Townsend MB, Smagala JA, Moore CL, Smith CB, Cox NJ, Kuchta RD, Rowlen KL (2006) Robust sequence selection method used to develop the FluChip diagnostic microarray for influenza virus. J Clin Microbiol 44(8):2857–2862CrossRefGoogle Scholar
  67. 67.
    Mhlanga M, Malmberg L (2001) Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods 25(4):463–471CrossRefGoogle Scholar
  68. 68.
    Monroy-Contreras R, Vaca L (2011) Molecular beacons: powerful tools for imaging RNA in living cells. J Nucleic Acids Article ID 741723, 15 ppGoogle Scholar
  69. 69.
    Motornov M, Zhou J, Pita M, Gopishetty V, Tokarev I, Katz E, Minko S (2008) “Chemical transformers” from nanoparticle ensembles operated with logic. Nano Lett 8(9):2993–2997CrossRefGoogle Scholar
  70. 70.
    Motornov M, Zhou J, Pita M, Tokarev I, Gopishetty V, Katz E, Minko S (2009) An integrated multifunctional nanosystem from command nanoparticles and enzymes. Small 5(7):817–820CrossRefGoogle Scholar
  71. 71.
    Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW (2006) Large-scale sequence analysis of avian in- fluenza isolates. Science 311(5767):1576–1580CrossRefGoogle Scholar
  72. 72.
    Palese P, Young JF (1982) Variation of influenza A, B, and C viruses. Science 215(4539):1468–1474CrossRefGoogle Scholar
  73. 73.
    Pattnaik P (2005) Surface plasmon resonance—applications in understanding receptor-ligand interaction. Appl Biochem Biotechnol 126(2):79–92CrossRefGoogle Scholar
  74. 74.
    Penchovsky R, Breaker RR (2005) Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat Biotechnol 23(11):1424–1433CrossRefGoogle Scholar
  75. 75.
    Penchovsky R (2012) Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics. ACS Synthet Biol 1(10):471–482CrossRefGoogle Scholar
  76. 76.
    Peyret N, Seneviratne PA, Allawi HT, SantaLucia J Jr (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal AA, CC, GG, and TT mismatches. Biochemistry 38(12):3468–3477CrossRefGoogle Scholar
  77. 77.
    Piatek A, Tyagi S, Pol A, Telenti A, Miller L, Kramer F, Alland D (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 16(4):359–363CrossRefGoogle Scholar
  78. 78.
    Pita M, Zhou J, Manesh KM, Halamek J, Katz E, Wang J (2009) Enzyme logic gates for assessing physiological conditions during an injury: towards digital sensors and actuators. Sens Actuators B-Chem 139(2):631–636CrossRefGoogle Scholar
  79. 79.
    Polsky R, Harper JC, Brozik SM (2012) Nanomaterial-based electrochemical DNA detection. In: Ozsoz M (ed) Electrochemical DNA Biosensors. Pan Stanford Publishing, Singapore, pp 427–480Google Scholar
  80. 80.
    Prody GA, Bakos JT, Buzayan JM, Schneider IR, Bruening G (1986) Autolytic processing of dimeric plant-virus satellite RNA. Science 231(4745):1577–1580CrossRefGoogle Scholar
  81. 81.
    Privman M, Tam TK, Bocharova V, Halamek J, Wang J, Katz E (2011) Responsive interface switchable by logically processed physiological signals: Toward “smart” actuators for signal amplification and drug delivery. ACS Appl Mater Interfaces 3(5):1620–1623CrossRefGoogle Scholar
  82. 82.
    Privman V, Pedrosa V, Melnikov D, Pita M, Simonian A, Katz E (2009) Enzymatic AND-gate based on electrode-immobilized glucose-6-phosphate dehydrogenase: Towards digital biosensors and biochemical logic systems with low noise. Biosens Bioelectron 25(4):695–701CrossRefGoogle Scholar
  83. 83.
    Privman M, Tam TK, Pita M, Katz E (2009) Switchable electrode controlled by enzyme logic network system: approaching physiologically regulated bioelectronics. J Am Chem Soc 131(3):1314–1321CrossRefGoogle Scholar
  84. 84.
    Rabbee N, Speed T (2006) A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 22(1):7–12CrossRefGoogle Scholar
  85. 85.
    Ramlan E, Zauner K-P (2013) In-silico design of computational nucleic acids for molecular information processing. J Cheminform 5:22CrossRefGoogle Scholar
  86. 86.
    Robertson DL, Joyce GF (1990) Selection in-vitro of an RNA enzyme that specifically cleaves single-stranded-DNA. Nature 344(6265):467–468CrossRefGoogle Scholar
  87. 87.
    Rowe AA, Miller EA, Plaxco KW (2010) Reagent less measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Anal Chem 82(17):7090–7095CrossRefGoogle Scholar
  88. 88.
    SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95(4):1460–1465CrossRefGoogle Scholar
  89. 89.
    Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94(9):4262–4266CrossRefGoogle Scholar
  90. 90.
    Schluecker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10(9–10):1344–1354CrossRefGoogle Scholar
  91. 91.
    Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y (2004) PB2 amino acid at position 627 affects, replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320(2):258–266CrossRefGoogle Scholar
  92. 92.
    Shlyahovsky B, Di L, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) Spotlighting of cocaine by an autonomous aptamer-based machine. J Am Chem Soc 129(13):3814–3815CrossRefGoogle Scholar
  93. 93.
    Simmel FC (2007) Towards biomedical applications for nucleic acid nanodevices. Nanomedicine 2(6):817–830CrossRefGoogle Scholar
  94. 94.
    Simpson ML, Sayler GS, Fleming JT, Applegate B (2001) Whole-cell biocomputing. Trends Biotechnol 19(8):317–323CrossRefGoogle Scholar
  95. 95.
    Sistare MF, Holmberg RC, Thorp HH (1999) Electrochemical studies of polynucleotide binding and oxidation by metal complexes: effects of scan rate, concentration, and sequence. J Phys Chem B 103(48):10718–10728CrossRefGoogle Scholar
  96. 96.
    Sivan S, Tuchman S, Lotan N (2003) A biochemical logic gate using an enzyme and its inhibitor. Part II: The logic gate. Biosystems 70(1):21–33CrossRefGoogle Scholar
  97. 97.
    Smith GJD, Fan XH, Wang J, Li KS, Qin K, Zhang JX, Vijaykrishna D, Cheung CL, Huang K, Rayner JM, Peiris JSM, Chen H, Webster RG, Guan Y (2006) Emergence and predominance of an H5N1 influenza variant in China. Proc Natl Acad Sci USA 103(45):16936–16941CrossRefGoogle Scholar
  98. 98.
    Stojanovic MN, de Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123(21):4928–4931CrossRefGoogle Scholar
  99. 99.
    Stojanovic MN, de Prada P (2001) D. W. Catalytic molecular beacons. ChemBioChem 2(6):411–415CrossRefGoogle Scholar
  100. 100.
    Stojanovic MN, Mitchell TE, Stefanovic D (2002) Deoxyribozyme-based logic gates. J Am Chem Soc 124(14):3555–3561CrossRefGoogle Scholar
  101. 101.
    Stojanovic MN, Semova S, Kolpashchikov D, Macdonald J, Morgan C, Stefanovic D (2005) Deoxyribozyme-based ligase logic gates and their initial circuits. J Am Chem Soc 127(19):6914–6915CrossRefGoogle Scholar
  102. 102.
    Stojanovic MN, Stefanovic D (2003) A deoxyribozyme-based molecular automaton. Nat Biotechnol 21(9):1069–1074CrossRefGoogle Scholar
  103. 103.
    Stojanovic MN, Stefanovic D (2003) Deoxyribozyme-based half-adder. J Am Chem Soc 125(22):6673–6676CrossRefGoogle Scholar
  104. 104.
    Stojanovic MN, Stefanovic D, LaBean T, Yan H (2005) In: Willner I, Katz E (eds) Bioelectronics: from theory to applications. Wiley-VCH, Weinheim, pp 427–455CrossRefGoogle Scholar
  105. 105.
    Stojanovic MN, Stefanovic D, Rudchenko S (2014) Exercises in Molecular Computing. Acc Chem Res 47(6):1845–1852CrossRefGoogle Scholar
  106. 106.
    Strack G, Pita M, Ornatska M, Katz E (2008) Boolean logic gates that use enzymes as input signals. ChemBioChem 9(8):1260–1266CrossRefGoogle Scholar
  107. 107.
    Tan L, Li Y, Drake TJ, Moroz L, Wang K, Li J, Munteanu A, Yang CJ, Martinez K, Tan W (2005) Molecular beacons for bioanalytical applications. Analyst 130(7):1002–1005CrossRefGoogle Scholar
  108. 108.
    Taylor SK, Pei R, Moon BC, Damera S, Shen A, Stojanovic MN (2009) Triggered release of an active peptide conjugate from a DNA device by an orally administrable small molecule. Angewandte Chemie-International Edition 48(24):4394–4397CrossRefGoogle Scholar
  109. 109.
    Tichoniuk M, Ligaj M, Filipiak M (2008) Application of DNA hybridization biosensor as a screening method for the detection of genetically modified food components. Sensors 8(4):2118–2135CrossRefGoogle Scholar
  110. 110.
    Tokarev I, Gopishetty V, Zhou J, Pita M, Motornov M, Katz E, Minko S (2009) Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. ACS Appl Mater Interfaces 1(3):532–536CrossRefGoogle Scholar
  111. 111.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment—RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249(4968):505–510CrossRefGoogle Scholar
  112. 112.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308CrossRefGoogle Scholar
  113. 113.
    Unger R, Moult J (2006) Towards computing with proteins. Proteins-Structure Function and Bioinformatics 63(1):53–64CrossRefGoogle Scholar
  114. 114.
    Vo-Dinh T, Wang H-N, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102Google Scholar
  115. 115.
    Von Maltzahn G, Harris TJ, Park J-H, Min D-H, Schmidt AJ, Sailor MJ, Bhatia SN (2007) Nanoparticle self-assembly gated by logical proteolytic triggers. J Am Chem Soc 129(19):6064–6065CrossRefGoogle Scholar
  116. 116.
    Wang C, Trau D (2011) A portable generic DNA bioassay system based on in situ oligonucleotide synthesis and hybridization detection. Biosens Bioelectron 26(5):2436–2441CrossRefGoogle Scholar
  117. 117.
    Wang G, Wang Y, Chen L, Choo J (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25(8):1859–1868CrossRefGoogle Scholar
  118. 118.
    Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Res 28(16):3011–3016CrossRefGoogle Scholar
  119. 119.
    Wang J, Katz E (2011) Digital biosensors with built-in logic for biomedical applications. Isr J Chem 51(1):141–150CrossRefGoogle Scholar
  120. 120.
    Wang J, Katz E (2010) Digital biosensors with built-in logic for biomedical applications-biosensors based on a biocomputing concept. Anal Bioanal Chem 398(4):1591–1603CrossRefGoogle Scholar
  121. 121.
    Waterman MS, Eggert M (1987) A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. J Mol Biol 197(4):723–728CrossRefGoogle Scholar
  122. 122.
    Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37(6):1153–1165CrossRefGoogle Scholar
  123. 123.
    Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647CrossRefGoogle Scholar
  124. 124.
    Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322(5900):456–460CrossRefGoogle Scholar
  125. 125.
    Weizmann Y, Beissenhirtz MK, Cheglakov Z, Nowarski R, Kotler M, Willner I (2006) A virus spotlighted by an autonomous DNA machine. Angewandte Chemie-International Edition 45(44):7384–7388CrossRefGoogle Scholar
  126. 126.
    Weizmann Y, Cheglakov Z, Pavlov V, Willner I (2006) Autonomous fueled mechanical replication of nucleic acid templates for the amplified optical detection of DNA. Angewandte Chemie-International Edition 45(14):2238–2242CrossRefGoogle Scholar
  127. 127.
    Wu Z-S, Jiang J-H, Shen G-L, Yu R-Q (2007) Highly sensitive DNA detection and point mutation identification: An electrochemical approach based on the combined use of ligase and reverse molecular beacon. Hum Mutat 28(6):630–637CrossRefGoogle Scholar
  128. 128.
    Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie-International Edition 44(34):5456–5459CrossRefGoogle Scholar
  129. 129.
    Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tagawa Y, Muramoto Y, Ito M, Kiso M, Horimoto T, Shinya K, Sawada T, Kiso M, Usui T, Murata T, Lin YP, Hay A, Haire LF, Stevens DJ, Russell RJ, Gamblin SJ, Skehel JJ, Kawaoka Y (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444(7117):378–382CrossRefGoogle Scholar
  130. 130.
    Yashin R, Rudchenko S, Stojanovic MN (2007) Networking particles over distance using oligonucleotide-based devices. J Am Chem Soc 129(50):15581–15584CrossRefGoogle Scholar
  131. 131.
    Yeh H-Y, Yates M, Mulchandania A, Chen W (2010) Molecular beacon–quantum dot–Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. Chem Commun 46:3914–3916CrossRefGoogle Scholar
  132. 132.
    Zhou J, Arugula MA, Halamek J, Pita M, Katz E (2009) Enzyme-based NAND and NOR logic gates with modular design. J Phys Chem B 113(49):16065–16070CrossRefGoogle Scholar
  133. 133.
    Zhou J, Halamek J, Bocharova V, Wang J, Katz E (2011) Bio-logic analysis of injury biomarker patterns in human serum samples. Talanta 83(3):955–959CrossRefGoogle Scholar
  134. 134.
    Zhou J, Tam TK, Pita M, Ornatska M, Minko S, Katz E (2009) Bioelectrocatalytic system coupled with enzyme-based biocomputing ensembles performing boolean logic operations: Approaching “smart” physiologically controlled biointerfaces. ACS Appl Mater Interfaces 1(1):144–149CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elebeoba E. May
    • 1
  • Jason C. Harper
    • 2
  • Susan M. Brozik
    • 2
  1. 1.University of HustonHustonUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations