Energy Harvesting in Nanonetworks

  • Shahram Mohrehkesh
  • Michele C. Weigle
  • Sajal K. Das
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 9)


The goal of this chapter is to review the process, issues, and challenges of energy harvesting in nanonetworks, composed of nanonodes that are nano to micro meters in size. A nanonode consisting of nan-memory, a nano-processor, nano-harvesters, ultra nano-capacitor, and a nano-transceiver harvests the energy required for its operations, such as processing and communication. The energy harvesting process in nanonetworks differs from traditional networks (e.g. wireless sensor networks, RFID) due to their unique characteristics such as nanoscale, communication model, and molecular operating environment. After reviewing the energy harvesting process and sources, we introduce the communication model, which is the main source of energy consumption for nanonodes. This is followed by a discussion on the models for joint energy harvesting and consumption processes. Finally, we describe approaches for optimizing the energy consumption process, which includes optimum data packet design, optimal energy utilization, energy consumption scheduling, and energy-harvesting-aware protocols.


Energy Consumption Wireless Sensor Network Packet Size Packet Transmission Energy Harvesting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akyildiz IF, Brunetti F, Blazquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52(12):2260–2279. doi: 10.1016/j.comnet.2008.04.001 CrossRefGoogle Scholar
  2. 2.
    Akyildiz IF, Jornet JM (2010) Electromagnetic wireless nanosensor networks. Nano Commun Netw 1(1):3–19. doi: 10.1016/j.nancom.2010.04.001 CrossRefGoogle Scholar
  3. 3.
    Avouris P (2009) Carbon nanotube electronics and photonics. Phys Today 62, 3440Google Scholar
  4. 4.
    Chalasani S, Conrad J (2008) A survey of energy harvesting sources for embedded systems. In: IEEE Southeastcon, pp 442–447 (2008). doi: 10.1109/SECON.2008.4494336
  5. 5.
    Chi K, Zhu Y, Jiang X, Tian X (2013) Optimal coding for transmission energy minimization in wireless nanosensor networks. Nano Commun Netw. doi: 10.1016/j.nancom.2013.07.001
  6. 6.
    Christ A, Douglas M, Roman J, Cooper E, Sample A, Waters B, Smith J, Kuster N (2013) Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits. IEEE Trans Electromag Compatib 55(2):265–274. doi: 10.1109/TEMC.2012.2219870 Google Scholar
  7. 7.
    Deb K (2005) Multi-objective optimization. In: Burke, E Kendall G (eds) Search methodologies, pp 273–316. Springer US. doi: 10.1007/0-387-28356-0_10
  8. 8.
    Fontana R (2004) Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Trans Microw Theory Techn 52(9):2087–2104. doi: 10.1109/TMTT.2004.834186 CrossRefGoogle Scholar
  9. 9.
    Gatzianas M, Georgiadis L, Tassiulas L (2010) Control of wireless networks with rechargeable batteries. IEEE Trans Wirel Commun 9(2):581–593. doi: 10.1109/TWC.2010.080903 CrossRefGoogle Scholar
  10. 10.
    Gilbert J, Balouchi F (2008) Comparison of energy harvesting systems for wireless sensor networks. Int J Autom Comput 5:334–347. doi: 10.1007/s11633-008-0334-2 CrossRefGoogle Scholar
  11. 11.
    Gorlatova M, Sarik J, Cong M, Kymissis I, Zussman G (2013) Movers and shakers: kinetic energy harvesting for the internet of things.
  12. 12.
    Gorlatova M, Wallwater A, Zussman G (2011) Networking low-power energy harvesting devices: measurements and algorithms. In: Proceedings of IEEE INFOCOM, pp 1602–1610. doi: 10.1109/INFCOM.2011.5934952
  13. 13.
    Gorlatova M, Wallwater A, Zussman G (2012) Networking low-power energy harvesting devices: measurements and algorithms. IEEE Trans Mobile Comput 12(9):1853–1865. doi: 10.1109/TMC.2012.154 CrossRefGoogle Scholar
  14. 14.
    Gupta A, Mohapatra P (2007) A survey on ultra wide band medium access control schemes. Comput Netw 51(11):2976–2993. doi: 10.1016/j.comnet.2006.12.008 CrossRefGoogle Scholar
  15. 15.
    Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652CrossRefGoogle Scholar
  16. 16.
    Hoogers G (2002) Fuel cell technology handbook. Handbook series for mechanical engineering. Taylor & FrancisGoogle Scholar
  17. 17.
    Hsu J, Zahedi S, Kansal A, Srivastava M, Raghunathan V (2006) Adaptive duty cycling for energy harvesting systems. In: Proceedings of the international symposium on low power electronics and design, pp 180–185. doi: 10.1109/LPE.2006.4271832
  18. 18.
    Hu Y, Zhang Y, Xu C, Zhu G, Wang ZL (2010) High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett 10(12):5025–5031CrossRefGoogle Scholar
  19. 19.
    Ivanov I, Vidakovi-Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3(4):803–846Google Scholar
  20. 20.
    Jornet J, Akyildiz I (2010) Channel capacity of electromagnetic nanonetworks in the terahertz band. In: IEEE international conference on communications (ICC), pp 1 –6. doi: 10.1109/ICC.2010.5501885
  21. 21.
    Jornet J, Akyildiz I (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 10(10):3211–3221. doi: 10.1109/TWC.2011.081011.100545 CrossRefGoogle Scholar
  22. 22.
    Jornet J, Akyildiz I (2011) Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In: IEEE international conference on communication (ICC), pp 1–6. doi: 10.1109/icc.2011.5962987
  23. 23.
    Jornet J, Akyildiz I (2012) Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz band. IEEE Trans Nanotechnol 11(3):570–580. doi: 10.1109/TNANO.2012.2186313 CrossRefGoogle Scholar
  24. 24.
    Jornet JM, Akyildiz IF (2010) Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In: Proceedings of the European conference on antennas and propagationGoogle Scholar
  25. 25.
    Jornet JM, Akyildiz IF (2011) Information capacity of pulse-based wireless nanosensor networks. In: Proceedings of IEEE SECON, pp 80–88Google Scholar
  26. 26.
    Jornet JM, Pujol JC, Pareta JS (2012) PHLAME: a physical layer aware MAC protocol for electromagnetic nanonetworks in the terahertz band. Nano Commun Netw 3(1):74–81. doi: 10.1016/j.nancom.2012.01.006 CrossRefGoogle Scholar
  27. 27.
    Kansal A, Hsu J, Zahedi S, Srivastava MB (2007) Power management in energy harvesting sensor networks. ACM Trans Embed Comput Syst 6(4). doi: 10.1145/1274858.1274870
  28. 28.
    Kar K, Krishnamurthy A, Jaggi N (2006) Dynamic node activation in networks of rechargeable sensors. IEEE/ACM Trans Netw 14(1):15–26. doi: 10.1109/TNET.2005.863710 CrossRefGoogle Scholar
  29. 29.
    Khouzani M, Sarkar S, Kar K (2011) Optimal routing and scheduling in multihop wireless renewable energy networks. In: Proceedings of sixth information theory and applications workshop (ITA)Google Scholar
  30. 30.
    Kim P (2008) Toward carbon based electronics. In: Proceedings of device research conference, p 9. doi: 10.1109/DRC.2008.4800712
  31. 31.
    Kocaoglu M, Akan O (2012) Minimum energy coding for wireless nanosensor networks. In: Proceedings of IEEE INFOCOM, pp 2826–2830. doi: 10.1109/INFCOM.2012.6195709
  32. 32.
    Li Z, Wang ZL (2011) Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23(1):84–89MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lin YM et al (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662CrossRefGoogle Scholar
  34. 34.
    Liu RS, Fan KW, Zheng Z, Sinha P (2011) Perpetual and fair data collection for environmental energy harvesting sensor networks. IEEE/ACM Trans Netw 19(4):947–960. doi: 10.1109/TNET.2010.2091280 CrossRefGoogle Scholar
  35. 35.
    Luo Y, Zhang J, Letaief KB (2012) Training optimization for energy harvesting communication systems. In: Proceedings of IEEE GlobecomGoogle Scholar
  36. 36.
    Luryi S, Xu J, Zaslavsky A (2007) Future trends in microelectronics: up the nano creek. Wiley, IEEEGoogle Scholar
  37. 37.
    MacVittie K, Halamek J, Halamkova L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86. doi: 10.1039/C2EE23209J CrossRefGoogle Scholar
  38. 38.
    Mercier PP, Lysaght AC, Bandyopadhyay S, Stankovic APCKM (2012) Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 30:1240–1243Google Scholar
  39. 39.
    Mitcheson P (2010) Energy harvesting for human wearable and implantable bio-sensors. In: IEEE engineering in medicine and biology society, pp 3432–3436 (2010)Google Scholar
  40. 40.
    Mohrehkesh S, Weigle MC (2013) Optimizing communication energy consumption in perpetual wireless nanosensor networks. In: Proceedings of the IEEE Globecom, Atlanta, GA, pp 545–550Google Scholar
  41. 41.
    Mohrehkesh S, Weigle MC (2014) Optimizing energy consumption in terahertz band nanonetworks. To appear in IEEE JSAC: molecular, biological, and multi-scale communications seriesGoogle Scholar
  42. 42.
    Mohrehkesh S, Weigle MC (2014) RIH-MAC: receiver-initiated harvesting-aware MAC for nanonetworks. In: Proceedings of the first ACM annual international conference on nanoscale computing and communication (NANOCOM), pp 6:1–6:9Google Scholar
  43. 43.
    Noh DK, Abdelzaher TF (2012) Efficient flow-control algorithm cooperating with energy allocation scheme for solar-powered WSNs. Wirel Commun Mobile Comput 12(5):379–392. doi: 10.1002/wcm.965 CrossRefGoogle Scholar
  44. 44.
    Pan C, Li Z, Guo W, Zhu J, Wang ZL (2011) Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angewandte Chemie 123(47):11388–11392CrossRefGoogle Scholar
  45. 45.
    Parks A, Sample A, Zhao Y, Smith J (2013) A wireless sensing platform utilizing ambient RF energy. In: IEEE topical conference on wireless sensors and sensor networks (WiSNet), pp 127–129. doi: 10.1109/WiSNet.2013.6488656
  46. 46.
    Pierobon M, Akyildiz I (2013) Capacity of a diffusion-based molecular communication system with channel memory and molecular noise. IEEE Trans Inf Theory 59(2):942–954. doi: 10.1109/TIT.2012.2219496 MathSciNetCrossRefGoogle Scholar
  47. 47.
    Rentmeesters M, Tsai W, Lin KJ (1996) A theory of lexicographic multi-criteria optimization. In: Proceedings of second IEEE international conference on engineering of complex computer systems, pp 76–79. doi: 10.1109/ICECCS.1996.558386
  48. 48.
    Roundy S (2005) On the effectiveness of vibration-based energy harvesting. J Intell Mater Syst Struct 16(10):809–823. doi: 10.1177/1045389X05054042 CrossRefGoogle Scholar
  49. 49.
    Roundy S, Leland E, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey J, Wright P, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4(1):28–36CrossRefGoogle Scholar
  50. 50.
    Roundy S, Wright P, Rabaey J (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic PublishersGoogle Scholar
  51. 51.
    Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144. doi: 10.1016/S0140-3664(02)00248-7 CrossRefGoogle Scholar
  52. 52.
    Sensale-Rodriguez B, Yan R, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat CommunGoogle Scholar
  53. 53.
    Sharma V, Mukherji U, Joseph V, Gupta S (2010) Optimal energy management policies for energy harvesting sensor nodes. IEEE Trans Wirel Commun 9(4):1326–1336. doi: 10.1109/TWC.2010.04.080749 CrossRefGoogle Scholar
  54. 54.
    Shenck N, Paradiso J (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3):30–42. doi: 10.1109/40.928763 CrossRefGoogle Scholar
  55. 55.
    Starner T (1996) Human-powered wearable computing. IBM Syst J 35(34):618–629. doi: 10.1147/sj.353.0618 CrossRefGoogle Scholar
  56. 56.
    Sudevalayam S, Kulkarni P (2011) Energy harvesting sensor nodes: survey and implications. IEEE Commun Surv Tutor 13(3):443–461. doi: 10.1109/SURV.2011.060710.00094 CrossRefGoogle Scholar
  57. 57.
    Wang P, Jornet JM, Malik MA, Akkari N, Akyildiz IF (2013) Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the terahertz band. Ad Hoc Netw 11(8):2541–2555. doi: 10.1016/j.adhoc.2013.07.002 CrossRefGoogle Scholar
  58. 58.
    Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie International Edition 51(47):11700–11721CrossRefGoogle Scholar
  59. 59.
    Wu K, Jiang Y, Marinakis D (2012) A stochastic calculus for network systems with renewable energy sources. In: Proceedings of IEEE conference on computer communications workshops (INFOCOM Workshops), pp 109–114. doi: 10.1109/INFCOMW.2012.6193470
  60. 60.
    Xu S, Hansen BJ, Wang ZL (2010) Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 1Google Scholar
  61. 61.
    Zungeru AM, Ang LM, Prabaharan S, Seng KP (2012) Chapter 13. Radio frequency energy harvesting and management for wireless sensor networks. CRC PressGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shahram Mohrehkesh
    • 1
  • Michele C. Weigle
    • 2
  • Sajal K. Das
    • 3
  1. 1.Department of Computer and Information SciencesTemple UniversityPhiladelphiaUSA
  2. 2.Department of Computer ScienceOld Dominion UniversityNorfolkUSA
  3. 3.Department of Computer ScienceMissouri University of Science and TechnologyRollaUSA

Personalised recommendations