Advertisement

From Biometric Scores to Forensic Likelihood Ratios

  • Daniel Ramos
  • Ram P. Krish
  • Julian Fierrez
  • Didier Meuwly
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

In this chapter, we describe the issue of the interpretation of forensic evidence from scores computed by a biometric system. This is one of the most important topics into the so-called area of forensic biometrics. We will show the importance of the topic, introducing some of the key concepts of forensic science with respect to the interpretation of results prior to their presentation in court, which is increasingly addressed by the computation of likelihood ratios (LR). We will describe the LR methodology, and will illustrate it with an example of the evaluation of fingerprint evidence in forensic conditions, by means of a fingerprint biometric system.

Keywords

Likelihood Ratio Reference Specimen Biometric System Source Level Evidence Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Saks MJ, Koehler JJ (2005) The coming paradigm shift in forensic identification science. Science 309(5736):892–895CrossRefGoogle Scholar
  2. 2.
    Cook R, Evett IW, Jackson G, Jones PJ, Lambert JA (1998) A model for case assessment and interpretation. Sci Justice 38:151–156CrossRefGoogle Scholar
  3. 3.
    Aitken CGG, Taroni F (2004) Statistics and the evaluation of evidence for forensic scientists. Wiley, ChichesterCrossRefzbMATHGoogle Scholar
  4. 4.
    Berger CA, Champod JS, Curran C, Dawid J, Kloosterman AP (2011) Expressing evaluative opinions: a position statement. Sci Justice 51:1–2. Several signatoriesGoogle Scholar
  5. 5.
    Willis S (2015) ENFSI guideline for the formulation of evaluative reports in forensic science. Monopoly Project MP2010: the development and implementation of an ENFSI standard for reporting evaluative forensic evidence. Technical report, European Network of Forensic Science InstitutesGoogle Scholar
  6. 6.
    Ramos D (2007) Forensic evaluation of the evidence using automatic speaker recognition systems. PhD thesis, Depto. de Ingenieria Informatica, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Madrid, Spain. http://atvs.ii.uam.es
  7. 7.
    Brümmer N, du Preez J (2006) Application independent evaluation of speaker detection. Comput Speech Lang 20(2–3):230–275CrossRefGoogle Scholar
  8. 8.
    van Leeuwen D, Brümmer N (2007) An introduction to application-independent evaluation of speaker recognition systems. In: Müller C (ed) Speaker classification. Lecture notes in computer science/Artificial intelligence, vol 4343. Springer, Heidelberg, Berlin, New YorkGoogle Scholar
  9. 9.
    Ramos D, Gonzalez-Rodriguez J (2013) Reliable support: measuring calibration of likelihood ratios. Forensic Sci Int 230:156–169CrossRefGoogle Scholar
  10. 10.
    Zadora G, Ramos D (2010) Evaluation of glass samples for forensic purposes–an application of likelihood ratio model and information-theoretical approach. Chemometr Intell Lab Syst 102:62–63CrossRefGoogle Scholar
  11. 11.
    Li P, Fu Y, Mohammed U, Elder J, Prince SJD (2010) Probabilistic models for inference about identity. IEEE Trans Pattern Anal Mach Intell (PAMI) 34(1):144–157Google Scholar
  12. 12.
    Dehak N, Kenny P, Dehak R, Dumouchel P, Ouellet P (2010) Front-end factor analysis for speaker verification. IEEE Trans Audio Speech Lang Process 19(4):788–798CrossRefGoogle Scholar
  13. 13.
    Villalba J, Brümmer N (2011) Towards fully Bayesian speaker recognition: integrating out the between-speaker covariance. Proceedings of the 12th annual conference of the international speech communication association, Interspeech 2011. Florence, Italy, pp 505–508Google Scholar
  14. 14.
    Zadora G, Martyna A, Ramos D, Aitken C (2014) Statistical analysis in forensic science: evidential values of multivariate physicochemical data. WileyGoogle Scholar
  15. 15.
    Rodriguez CM, de Jongh A, Meuwly D (2013) Introducing a semiautomatic method to simulate large numbers of forensic fingermarks for research on fingerprint identification. J Forensic Sci 57(2):334–342CrossRefGoogle Scholar
  16. 16.
    van Leeuwen DA, Brümmer N (2013) The distribution of calibrated likelihood-ratios in speaker recognition. arXiv preprintGoogle Scholar
  17. 17.
    Ramos D, Gonzalez-Rodriguez J, Zadora G, Aitken C (2013) Information-theoretical assessment of the performance of likelihood ratio models. J Forensic Sci 58:1503–1518CrossRefGoogle Scholar
  18. 18.
    Haraksim R, Ramos D, Meuwly D, Berger CE (2015) Measuring coherence of computer-assisted likelihood ratio methods. Forensic Sci Int 249:123–132CrossRefGoogle Scholar
  19. 19.
    Meuwly D, Ramos D, Haraksim R (in press) A guideline for the validation of likelihood ratio methods used for forensic evidence evaluation. Forensic Sci Int.  10.1016/j.forsciint.2016.03.048
  20. 20.
    Taroni F, Aitken C, Garbolino P, Biedermann A (2006) Bayesian networks and probabilistic inference in forensic science. WileyGoogle Scholar
  21. 21.
    Cook R, Evett IW, Jackson G, Jones PJ, Lambert JA (1998) A hierarchy of propositions: deciding which level to address in casework. Sci Justice 38(4):231–239CrossRefGoogle Scholar
  22. 22.
    Evett IW, Jackson G, Lambert JA (2000) More on the hierarchy of propositions: exploring the distinction between explanations and propositions. Sci Justice 401(1):3–10CrossRefGoogle Scholar
  23. 23.
    Champod C, Evett IW, Jackson G (2004) Establishing the most appropriate databases for addressing source level propositions. Sci Justice 44(3):153–164CrossRefGoogle Scholar
  24. 24.
    Evett IW (1998) Towards a uniform framework for reporting opinions in forensic science casework. Sci Justice 38(3):198–202CrossRefGoogle Scholar
  25. 25.
    Neumann C, Evett IW, Skerrett JE, Mateos-Garcia I (2011) Quantitative assessment of evidential weight for a fingerprint comparison I: generalisation to the comparison of a mark with set of ten prints from a suspect. Forensic Sci Int 207:101–105CrossRefGoogle Scholar
  26. 26.
    Neumann C, Evett I, Skerret JE (2012) Quantifying the weight of evidence from a forensic fingerprint comparison: a new paradigm. J R Stat Soc Ser A: Stat Soc 175(2):371–415MathSciNetCrossRefGoogle Scholar
  27. 27.
    Taroni F, Aitken CGG, Garbolino P (2001) De Finetti’s subjectivism, the assessment of probabilities and the evaluation of evidence: a commentary for forensic scientists. Sci Justice 41(3):145–150CrossRefGoogle Scholar
  28. 28.
    Doddington G, Liggett W, Martin A, Przybocki M, Reynolds DA (1998) Sheeps, goats, lambs and wolves: a statistical analysis of speaker performance in the NIST 1998 speaker recognition evaluation. In: Proceedings of ICSLPGoogle Scholar
  29. 29.
    Hepler AB, Saunders CP, Davis LJ, Buscaglia J (2011) Score-based likelihood ratios for handwriting evidence. Foresic Sci Int 219(1–3):129–140Google Scholar
  30. 30.
    Meuwly D (2001) Reconaissance de Locuteurs en Sciences Forensiques: L’apport d’une Approache Automatique. PhD thesis, IPSC-Universite de LausanneGoogle Scholar
  31. 31.
    Navratil J, Ramaswamy G (2003) The awe and mystery of T-Norm. In: Proceedings of ESCA European conference on speech, communication and technology, EuroSpeech, pp 2009–2012Google Scholar
  32. 32.
    Gonzalez-Rodriguez J, Fierrez-Aguilar J, Ramos-Castro D, Ortega-Garcia J (2005) Bayesian analysis of fingerprint, face and signature evidences with automatic biometric systems. Forensic Sci Int 155(2–3):126–140CrossRefGoogle Scholar
  33. 33.
    Pigeon S, Druyts P, Verlinde P (2000) Applying logistic regression to the fusion of the NIST’99 1-speaker submissions. Digit Signal Process 10(1):237–248CrossRefGoogle Scholar
  34. 34.
    Brümmer N, Burget L, Cernocky J, Glembek O, Grezl F, Karafiat M, van Leeuwen DA, Matejka P, Scwartz P, Strasheim A (2007) Fusion of heterogeneous speaker recognition systems in the STBU submission for the NIST speaker recognition evaluation 2006. IEEE Trans Audio Speech Signal Process 15(7):2072–2084CrossRefGoogle Scholar
  35. 35.
    Gonzalez-Rodriguez J, Rose P, Ramos D, Toledano DT, Ortega-Garcia J (2007) Emulating DNA: rigorous quantification of evidential weight in transparent and testable forensic speaker recognition. IEEE Trans Audio Speech Signal Process 15(7):2072–2084CrossRefGoogle Scholar
  36. 36.
    Vergeer P, Bolck A, Peschier LJ, Berger CE, Hendriks JN (2014) Likelihood ratio methods for forensic comparison of evaporated gasoline residues. Sci Justice 56(6):401–411CrossRefGoogle Scholar
  37. 37.
    Morrison GS (2009) Likelihood-ratio-based forensic speaker comparison using parametric representations of vowel formant trajectories. J Acoust Soc Am 125:2387–2397CrossRefGoogle Scholar
  38. 38.
    Duda RO, Hart PE, Stork DG (2001) Pattern classification. WileyGoogle Scholar
  39. 39.
    Cappelli R, Ferrara M, Maltoni D (2010) Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans Pattern Anal Mach Intell 32:2128–2141CrossRefGoogle Scholar
  40. 40.
    Cappelli R, Ferrara M, Maltoni D (2010) Fingerprint indexing based on minutia cylinder code. IEEE Trans Pattern Anal Mach Intell 33:1051–1057CrossRefGoogle Scholar
  41. 41.
    Ferrara M, Maltoni D, Cappelli R (2012) Noninvertible minutia cylinder-code representation. IEEE Trans Inf Forensics Secur 7:1727–1737CrossRefGoogle Scholar
  42. 42.
    Egli N (2009) Interpretation of partial fingermarks using an automated fingerprint identification system. PhD thesis, Institute de Police Scientifique, Ecole de Sciences CriminellesGoogle Scholar
  43. 43.
    Santamaria F (1955) A new method of evaluating ridge characteristics. Fingerprint Ident MagGoogle Scholar
  44. 44.
    Auckenthaler R, Carey M, Lloyd-Tomas H (2000) Score normalization for text-independent speaker verification systems. Digit Signal Process 10:42–54CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daniel Ramos
    • 1
  • Ram P. Krish
    • 1
  • Julian Fierrez
    • 1
  • Didier Meuwly
    • 2
    • 3
  1. 1.ATVS - Biometric Recognition Group, Escuela Politecnica SuperiorUniversidad Autonoma de MadridMadridSpain
  2. 2.Netherlands Forensic InstituteThe HagueThe Netherlands
  3. 3.University of TwenteEnschedeThe Netherlands

Personalised recommendations