Advertisement

Impact of the Microbiota and Gastric Disease Development by Helicobacter pylori

  • Teresa Alarcón
  • Laura Llorca
  • Guillermo Perez-PerezEmail author
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 400)

Abstract

Microorganisms in humans form complex communities with important functions and differences in each part of the body. The stomach was considered to be a sterile organ until the discovery of Helicobacter pylori, but nowadays, it is possible to demonstrate that other microorganisms beyond H. pylori can colonize the gastric mucosa and that the diverse microbiota ecosystem of the stomach is different from the mouth and the esophagus, and also from the small intestine and large intestine. H. pylori seems to be the most important member of the gastric microbiota with the highest relative abundance when present, but when it is absent, the stomach has a diverse microbiota. Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Fusobacteria are the most abundant phyla in both H. pylori-positive and H. pylori-negative patients. The gastric commensal flora may play some role in the H. pylori-associated carcinogenicity, and differences in the gastric microbiota composition of patients with gastric cancer, intestinal metaplasia, and chronic gastritis are described. The gastric microbiota changed gradually from non-atrophic gastritis to intestinal metaplasia, and to gastric cancer (type intestinal).

Keywords

H. pylori Gastric microbiota Microbiome Disease development 

References

  1. Abdo Z, Schuette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938. doi: 10.1111/j.1462-2920.2005.00959.x CrossRefPubMedGoogle Scholar
  2. Abreu MT, Peek RM Jr (2014) Gastrointestinal malignancy and the microbiome. Gastroenterology 146(1534–1546):e3. doi: 10.1053/j.gastro.2014.01.001 Google Scholar
  3. Adamsson I, Nord CE, Lundquist P, Sjöstedt S, Edlund C (1999) Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. J Antimicrob Chemother 44:629–640CrossRefPubMedGoogle Scholar
  4. Amieva M, Peek RM Jr (2016) Pathobiology of Helicobacter pylori-induced Gastric Cancer. Gastroenterology 150(1):64–78. doi: 10.1053/j.gastro.2015.09.004 CrossRefPubMedGoogle Scholar
  5. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836. doi: 10.1371/journal.pone.0002836 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan T, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123. doi: 10.1126/science.1224820 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arweiler NB, Netuschil L (2016) The Oral Microbiota. In: Microbiota of the human body. Editors: Schwiertz A. Springer International Publishing, pp 45–60. doi  10.1007/978-3-319-31248-4_4
  8. Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, Mantilla A, Torres J (2014) Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep 4:4202. doi: 10.1038/srep04202 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom E a, Francois F, Perez-Perez G, Blaser MJ, Relman DA (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 103:732–737. doi: 10.1073/pnas.0506655103
  10. Blaser MJ, Cardon ZG, Cho MK, Dangl JL, Donohue TJ, Green JL, Knight R, Maxon ME, Northen TR, Pollard KS, Brodie EL (2016) Toward a predictive understanding of earth’s microbiomes to address 21st century challenges. mBio 7(3):e00714–e00716. doi: 10.1128/mBio.00714-16 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD (2016) Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature 533(7604):536–543. doi: 10.1038/nature17645 CrossRefGoogle Scholar
  12. Calmels S, Venezia ND, Bartsch H (1990) Isolation of an enzyme catalysing nitrosamine formation in Pseudomonas aeruginosa and Neisseria mucosae. Biochem Biophys Res Commun 171:655–660CrossRefPubMedGoogle Scholar
  13. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522. doi: 10.1073/pnas.1000080107 CrossRefPubMedGoogle Scholar
  14. Chan YK, Estaki M, Gibson DL (2013) Clinical consequences of diet-induced dysbiosis. Ann Nutr Metab 63:28–40. doi: 10.1159/000354902 CrossRefPubMedGoogle Scholar
  15. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593. doi: 10.1016/j.cell.2012.04.037 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Čitar M, Hacin B, Tompa G, Štempelj M, Rogelj I, Dolinšek J, Narat M, Matijašić BB (2015) Human intestinal mucosa-associated Lactobacillus and Bifidobacterium strains with probiotic properties modulate IL-10, IL-6 and IL-12 gene expression in THP-1 cells. Benef Microbes 6:325–336. doi: 10.3920/BM2014.0081 CrossRefPubMedGoogle Scholar
  17. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. doi: 10.1038/nrn3346 CrossRefPubMedGoogle Scholar
  18. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. doi: 10.1038/nature12820 CrossRefPubMedGoogle Scholar
  19. Delgado S, Cabrera-Rubio R, Mira A, Suárez A, Mayo B (2013) Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods. Microb Ecol 65:763–772. doi: 10.1007/s00248-013-0192-5 CrossRefPubMedGoogle Scholar
  20. Dicksved J, Lindberg M, Rosenquist M, Enroth H, Jansson JK, Engstrand L (2009) Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J Med Microbiol 58:509–516. doi: 10.1099/jmm.0.007302-0 CrossRefPubMedGoogle Scholar
  21. Earle KA, Billings G, Sigal M, Lichtman JS, Hansson GC, Elias JE, Amieva MR, Huang KC, Sonnenburg JL (2015) Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18(4):478–488. doi: 10.1016/j.chom.2015.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Engstrand L, Lindberg M (2013) Helicobacter pylori and the gastric microbiota. Best Pract Res Clin Gastroenterol 27:39–45. doi: 10.1016/j.bpg.2013.03.016 CrossRefPubMedGoogle Scholar
  23. Eun CS, Kim BK, Han DS, Kim SY, Kim KM, Choi BY, Song KS, Kim YS, Kim JF (2014) Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter 19:407–416. doi: 10.1111/hel.12145 CrossRefPubMedGoogle Scholar
  24. Fan W, Huo G, Li X, Yang L, Duan C (2014) Impact of diet in shaping gut microbiota revealed by a comparative study in infants during the first six months of life. J Microbiol Biotechnol 24:133–143. doi: 10.4014/jmb.1309.09029 CrossRefPubMedGoogle Scholar
  25. Forsythe SJ, Cole JA (1987) Nitrite accumulation during anaerobic nitrate reduction by binary suspensions of bacteria isolated from the achlorhydric stomach. J Gen Microbiol 133:1845–1849PubMedGoogle Scholar
  26. Fuchs H-M, Dorfman S, Floch MH (1976) The effect of dietary fiber supplementation in man. II. Alteration in fecal physiology and bacterial flora. Am J Clin Nutr 29:1443–1447Google Scholar
  27. Fujimura KE, Slusher NA, Cabana MD, Lynch SV (2010) Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 8:435–454. doi: 10.1586/eri.10.14 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ge Z, Feng Y, Muthupalani S, Eurell LL, Taylor NS, Whary MT, Fox JG (2011) Coinfection with Enterohepatic Helicobacter species can ameliorate or promote Helicobacter pylori-induced gastric pathology in C57BL/6 mice. Infect Immun 79:3861–3871. doi: 10.1128/IAI.05357-11 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Geva-Zatorsky N, Alvarez D, Hudak JE, Reading NC, Erturk-Hasdemir D, Dasgupta S, von Andrian UH, Kasper DL (2015) In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat Med 21:1091–1100. doi: 10.1038/nm.3929 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Goldsmith JR, Sartor RB (2014) The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 49:785–798. doi: 10.1007/s00535-014-0953-z CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gotteland M, Brunser O, Cruchet S (2006) Systematic review: are probiotics useful in controlling gastric colonization by Helicobacter pylori? Aliment Pharmacol Ther 23:1077–1086. doi: 10.1111/j.1365-2036.2006.02868.x CrossRefPubMedGoogle Scholar
  32. Greub G (2012) Culturomics: a new approach to study the human microbiome. Clin Microbiol Infect 18:1157–1159. doi: 10.1111/1469-0691.12032 CrossRefPubMedGoogle Scholar
  33. Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38:159–165. doi: 10.2337/dc14-0769 CrossRefPubMedGoogle Scholar
  34. Hattori M, Taylor TD (2009) The human intestinal microbiome: a new frontier of human biology. DNA Res 16:1–12. doi: 10.1093/dnares/dsn033 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman H-YN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208. doi: 10.1126/science.1195979
  36. Heimesaat MM, Fischer A, Plickert R, Wiedemann T, Loddenkemper C, Göbel UB, Bereswill S, Rieder G (2014) Helicobacter pylori induced gastric immunopathology is associated with distinct microbiota changes in the large intestines of long-term infected Mongolian gerbils. PLoS ONE 9:e100362. doi: 10.1371/journal.pone.0100362 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hirsch C, Tegtmeyer N, Rohde M, Rowland M, Oyarzabal OA, Backert S (2012) Live Helicobacter pylori in the root canal of endodontic-infected deciduous teeth. J Gastroenterol 47:936–940. doi: 10.1007/s00535-012-0618-8 CrossRefPubMedGoogle Scholar
  38. Homan M, Orel R (2015) Are probiotics useful in Helicobacter pylori eradication? World J Gastroenterol 21(37):10644–10653. doi: 10.3748/wjg.v21.i37.10644 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hu Y, He L, Xiao D, Liu G (2012) Bacterial flora concurrent with Helicobacter pylori in the stomach of patients with upper gastrointestinal diseases. World J Gastroenterol 18:1257–1261. doi: 10.3748/wjg.v18.i11.1257 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Huang Y-F, Chen S-C, Chiang Y-S, Chen T-H, Chiu K-P (2012) Palindromic sequence impedes sequencing-by-ligation mechanism. BMC Syst Biol 6:S10. doi: 10.1186/1752-0509-6-S2-S10 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hutchison CA (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 35:6227–6237. doi: 10.1093/nar/gkm688 CrossRefPubMedPubMedCentralGoogle Scholar
  42. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 100(Pt B):1–441Google Scholar
  43. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of Intestinal Th17 Cells by segmented filamentous bacteria. Cell 139:485–498. doi: 10.1016/j.cell.2009.09.033 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 5:e9836. doi: 10.1371/journal.pone.0009836 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jo HJ, Kim J, Kim N, Park JH, Nam RH, Seok Y-J, Kim Y-R, Kim JS, Kim JM, Kim JM, Lee DH, Jung HC (2016) Analysis of gastric microbiota by pyrosequencing: minor role of bacteria other than Helicobacter pylori in the gastric carcinogenesis. Helicobacter. doi: 10.1111/hel.12293 PubMedGoogle Scholar
  46. Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE, Paster BJ (2003) Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 41:558–563. doi: 10.1128/JCM.41.2.558-563.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Khosravi Y, Dieye Y, Poh B (2014) Culturable bacterial microbiota of the stomach of Helicobacter pylori positive and negative gastric disease patients. Sci World 2014:1–10. doi: 10.1155/2014/610421 Google Scholar
  48. Khosravi Y, Bunte RM, Chiow KH, Tan TL, Wong WY, Poh QH, Doli Sentosa IM, Seow SW, Amoyo AA, Pettersson S, Loke MF, Vadivelu J (2016) Helicobacter pylori and gut microbiota modulate energy homeostasis prior to inducing histopathological changes in mice. Gut Microbes 7:48–53. doi: 10.1080/19490976.2015.1119990 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kienesberger S, Cox LM, Livanos A, Zhang X-S, Chung J, Perez-Perez GI, Gorkiewicz G, Zechner EL, Blaser MJ (2016) Gastric Helicobacter pylori infection affects local and distant microbial populations and host responses. Cell Rep 14:1395–1407. doi: 10.1016/j.celrep.2016.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kim J, Kim N, Jo HJ, Park JH, Nam RH, Seok Y-J, Kim Y-R, Kim JS, Kim JM, Kim JM, Lee DH, Jung HC (2015) An appropriate cutoff value for determining the colonization of Helicobacter pylori by the pyrosequencing method: comparison with conventional methods. Helicobacter 20:370–380. doi: 10.1111/hel.12214 CrossRefPubMedGoogle Scholar
  51. Lawson RD, Coyle WJ (2010) The noncolonic microbiome: does it really matter? Curr Gastroenterol Rep 12:259–262. doi: 10.1007/s11894-010-0111-6 CrossRefPubMedGoogle Scholar
  52. Lee CW, Rickman B, Rogers AB, Muthupalani S, Takaishi S, Peiying Y, Wang TC, Fox JG (2009) Combination of sulindac and antimicrobial eradication of Helicobacter pylori prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Cancer Res 69:8166–8174. doi: 10.1158/0008-5472.CAN-08-3856 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lertpiriyapong K, Whary MT, Muthupalani S, Lofgren JL, Gamazon ER, Feng Y, Ge Z, Wang TC, Fox JG (2014) Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 63:54–63. doi: 10.1136/gutjnl-2013-305178 CrossRefPubMedGoogle Scholar
  54. Leung A, Tsoi H, Yu J (2015) Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Rev Gastroenterol Hepatol 9:651–657. doi: 10.1586/17474124.2015.1001745 CrossRefPubMedGoogle Scholar
  55. Li X-X, Wong GL-H, To K-F, Wong VW-S, Lai LH, Chow DK-L, Lau JY-W, Sung JJ-Y, Ding C (2009) Bacterial microbiota profiling in gastritis without Helicobacter pylori infection or non-steroidal anti-inflammatory drug use. PLoS ONE 4:e7985. doi: 10.1371/journal.pone.0007985 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Llorca L, Pérez-Pérez G, Urruzuno P, Martínez MJ, Iizumi T, Gao Z, Shon J, Chung J, Cox LM, Simón Soro A, Mira A, Alarcón T (2016a) Characterization of the gastric microbiota in a pediatric population according to Helicobacter pylori status. Pediatr Infect Dis J. (in press)Google Scholar
  57. Llorca L, Pérez G, Urruzuno P, Martínez MJ, Alarcón T (2016b) Relationship between histological findings and body mass index (BMI) with gastric microbiome, including Helicobacter pylori, in a paediatric population (Oral communication). In: 26th ECCMID (European Congres of Clinical Microbiology and Infectious Diseases). Ámsterdam, April 2016Google Scholar
  58. Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, Potter A, Varro A, Eibach D, Suerbaum S, Wang TC, Fox JG (2011) Lack of commensal flora in helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 140:210–220. doi: 10.1053/j.gastro.2010.09.048 CrossRefPubMedGoogle Scholar
  59. Lozupone CA, Knight R (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32:557–578. doi: 10.1111/j.1574-6976.2008.00111.x CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative Beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585. doi: 10.1128/AEM.01996-06 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lukic J, Strahinic I, Milenkovic M, Golic N, Kojic M, Topisirovic L, Begovic J (2013) Interaction of Lactobacillus fermentum BGHI14 with rat colonic mucosa: implications for colitis induction. Appl Environ Microbiol 79(18):5735–5744. doi: 10.1128/AEM.01807-13
  62. Lundberg JO, Weitzberg E (2013) Biology of nitrogen oxides in the gastrointestinal tract. Gut 62:616–629. doi: 10.1136/gutjnl-2011-301649 CrossRefPubMedGoogle Scholar
  63. Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F, Karaoz U, Contreras M, Blaser MJ, Brodie EL, Dominguez-Bello MG (2011) Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J 5:574–579. doi: 10.1038/ismej.2010.149 CrossRefPubMedGoogle Scholar
  64. Martin ME, Solnick JV (2014) The gastric microbial community, Helicobacter pylori colonization, and disease. Gut Microbes 5:345–350. doi: 10.4161/gmic.28573 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mason KL, Downward JRE, Falkowski NR, Young VB, Kao JY, Huffnagle GB (2012) Interplay between the gastric bacterial microbiota and Candida albicans during postantibiotic recolonization and gastritis. Infect Immun 80:150–158. doi: 10.1128/IAI.05162-11 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37:47–55. doi: 10.1007/s00281-014-0454-4 CrossRefPubMedGoogle Scholar
  67. Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979PubMedPubMedCentralGoogle Scholar
  68. Mowat C, Williams C, Gillen D, Hossack M, Gilmour D, Carswell A, Wirz A, Preston T, McColl KE (2000) Omeprazole, Helicobacter pylori status, and alterations in the intragastric milieu facilitating bacterial N-nitrosation. Gastroenterology 119:339–347. doi: 10.1053/gast.2000.9367 CrossRefPubMedGoogle Scholar
  69. Musso G, Gambino R, Cassader M (2011) Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med 62:361–380. doi: 10.1146/annurev-med-012510-175505 CrossRefPubMedGoogle Scholar
  70. Nardone G, Compare D (2015) The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United Eur Gastroenterol J 3:255–260. doi: 10.1177/2050640614566846 CrossRefGoogle Scholar
  71. Nguyen NP, Warnow T, Pop M, White B (2016) A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. npj Biofilms Microbiomes 2. doi: 10.1038/npjbiofilms.2016.4
  72. Nikolaki S, Tsiamis G (2013) Microbial diversity in the era of omic technologies. Biomed Res Int. doi: 10.1155/2013/958719 PubMedPubMedCentralGoogle Scholar
  73. Oh B, Kim BS, Kim JW, Kim JS, Koh SJ, Kim BG, Lee KL, Chun J (2016) The effect of probiotics on gut microbiota during the Helicobacter pylori eradication: randomized controlled trial. Helicobacter 21(3):165–174. doi: 10.1111/hel.12270 CrossRefPubMedGoogle Scholar
  74. Osaki T, Matsuki T, Asahara T, Zapoòman C, Hanawa T, Yonezawa H, Kurata S, Woo TD, Nomoto K, Kamiya S (2012) Comparative analysis of gastric bacterial microbiota in Mongolian gerbils after long-term infection with Helicobacter pylori. Microb Pathog 53:12–18CrossRefPubMedGoogle Scholar
  75. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M. NIH HMP Working Group (2009) The NIH human microbiome project. Genome Res 19:2317–2323. doi: 10.1101/gr.096651.109
  76. Polk DB, Peek RM Jr (2010) Helicobacter pylori: gastric cáncer and beyond. Nat Rev Cancer 10:403–414. doi: 10.1038/nrc2857 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Preston A (2003) Choosing a cloning vector. Methods Mol Biol 235:19–26. doi: 10.1385/1-59259-409-3:19 PubMedGoogle Scholar
  78. Propheter DC, Hooper LV (2015) Bacteria come into focus: new tools for visualizing the microbiota. Cell Host Microbe 18(4):392–394. doi: 10.1016/j.chom.2015.10.004 CrossRefPubMedGoogle Scholar
  79. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. doi: 10.1038/nature08821
  80. Rao A, Jump RL, Pultz NJ, Pultz MJ, Donskey CJ (2006) In vitro killing of nosocomial pathogens by acid and acidified nitrite. Antimicrob Agents Chemother 50:3901–3904. doi: 10.1128/AAC.01506-05 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Salonen A (2014) Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS ONE 9:e90702. doi: 10.1371/journal.pone.0090702 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sanduleanu S, Jonkers D, De Bruine A, Hameeteman W, Stockbrügger RW (2001) Non-Helicobacter pylori bacterial flora during acid-suppressive therapy: differential findings in gastric juice and gastric mucosa. Aliment Pharmacol Ther 15:379–388. doi: 10.1046/j.1365-2036.2001.00888.x CrossRefPubMedGoogle Scholar
  83. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133. doi: 10.1146/annurev.mi.31.100177.000543 CrossRefPubMedGoogle Scholar
  84. Schulz C, Koch N, Schütte K, Pieper DH, Malfertheiner P (2015) H. pylori and its modulation of gastrointestinal microbiota. J Dig Dis 16(3):109–117. doi: 10.1111/1751-2980.12233 CrossRefPubMedGoogle Scholar
  85. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. doi: 10.1186/gb-2011-12-6-r60 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904. doi: 10.1152/physrev.00045.2009 CrossRefPubMedGoogle Scholar
  87. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. doi: 10.1038/nbt1486 CrossRefPubMedGoogle Scholar
  88. Sjöstedt S, Heimdahl A, Kager L, Nord CE (1985) Microbial colonization of the oropharynx, esophagus and stomach in patients with gastric diseases. Eur J Clin Microbiol 4:49–51. doi: 10.1007/BF02148660 CrossRefPubMedGoogle Scholar
  89. Sjöstedt S, Kager L, Heimdahl A, Nord CE (1988) Microbial colonization of tumors in relation to the upper gastrointestinal tract in patients with gastric carcinoma. Ann Surg 207:341–346CrossRefPubMedPubMedCentralGoogle Scholar
  90. Stockbrugger RW, Cotton PB, Eugenides N, Bartholomew BA, Hill MJ, Walters CL (1982) Intragastric nitrites, nitrosamines, and bacterial overgrowth during cimetidine treatment. Gut 23:1048–1054CrossRefPubMedPubMedCentralGoogle Scholar
  91. Streit WR, Schmitz RA (2004) Metagenomics—the key to the uncultured microbes. Curr Opin Microbiol 7:492–498. doi: 10.1016/j.mib.2004.08.002 CrossRefPubMedGoogle Scholar
  92. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810. doi: 10.1038/nature06244 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr Rev 70(Suppl 1):S38–S44. doi: 10.1111/j.1753-4887.2012.00493.x CrossRefPubMedPubMedCentralGoogle Scholar
  94. Van Den Bogert B, Boekhorst J, Herrmann R, Smid EJ, Zoetendal EG, Kleerebezem M (2013) Comparative genomics analysis of Streptococcus isolates from the human small intestine reveals their adaptation to a highly dynamic ecosystem. PLoS ONE 8:e83418. doi: 10.1371/journal.pone.0083418 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Vesper BJ, Jawdi A, Altman KW, Haines GK 3rd, Tao L, Radosevich JA (2009) The effect of proton pump inhibitors on the human microbiota. Curr Drug Metab 10:84–89. doi: 10.2174/138920009787048392 CrossRefPubMedGoogle Scholar
  96. Wang L, Zhou J, Xin Y, Geng C, Tian Z, Yu X, Dong Q (2016) Bacterial overgrowth and diversification of microbiota in gastric cancer. Eur J Gastroenterol Hepatol 28(3):261–266. doi: 10.1097/MEG.0000000000000542 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Whittaker R (1972) Evolution and measurement of species diversity. Taxon 21:213–251CrossRefGoogle Scholar
  98. Williams C, McColl KEL (2006) Review article: proton pump inhibitors and bacterial overgrowth. Aliment Pharmacol Ther 23:3–10. doi: 10.1111/j.1365-2036.2006.02707.x CrossRefPubMedGoogle Scholar
  99. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, Laughlin RC, Gomez G, Wu J, Lawhon SD, Popova IE, Parikh SJ, Adams LG, Tsolis RM, Stewart VJ, Bäumler AJ (2013) Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339:708–711. doi: 10.1126/science.1232467 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Wu WM, Yang YS, Peng LH (2014) Microbiota in the stomach: new insights. J Dig Dis 15:54–61. doi: 10.1111/1751-2980.12116 CrossRefPubMedGoogle Scholar
  101. Yang I, Nell S, Suerbaum S (2013) Survival in hostile territory: the microbiota of the stomach. FEMS Microbiol Rev 37:736–761. doi: 10.1111/1574-6976.12027 CrossRefPubMedGoogle Scholar
  102. Yang I, Woltemate S, Piazuelo MB, Bravo LE, Yepez MC, Romero-Gallo J, Delgado AG, Wilson KT, Peek RM, Correa P, Josenhans C, Fox JG, Suerbaum S (2016) Different gastric microbiota compositions in two human populations with high and low gastric cancer risk in Colombia. Sci Rep 6:18594. doi: 10.1038/srep18594 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Yoon SS, Kim E-K, Lee W-J (2015) Functional genomic and metagenomic approaches to understanding gut microbiota-animal mutualism. Curr Opin Microbiol 24:38–46. doi: 10.1016/j.mib.2015.01.007 CrossRefPubMedGoogle Scholar
  104. Zhao L (2013) The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11:639–647. doi: 10.1038/nrmicro3089 CrossRefPubMedGoogle Scholar
  105. Zilberstein B, Quintanilha AG, Santos MAA, Pajecki D, Moura EG, Alves PRA, Maluf Filho F, de Souza JAU, Gama-Rodrigues J (2007) Digestive tract microbiota in healthy volunteers. Clinics (Sao Paulo) 62:47–54. doi: 10.1590/S1807-59322007000100008 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Teresa Alarcón
    • 1
    • 2
  • Laura Llorca
    • 1
  • Guillermo Perez-Perez
    • 3
    Email author
  1. 1.Department of MicrobiologyInstituto de Investigación Sanitaria Princesa, Hospital Universitario La PrincesaMadridSpain
  2. 2.Department of Preventive Medicine, Public Health and Microbiology, Medical SchoolAutonomous University of MadridMadridSpain
  3. 3.Department of Medicine and MicrobiologyNew York University Langone Medical CenterNew YorkUSA

Personalised recommendations