Reasoning Under Uncertainty: Towards Collaborative Interactive Machine Learning

  • Sebastian Robert
  • Sebastian Büttner
  • Carsten Röcker
  • Andreas Holzinger
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9605)

Abstract

In this paper, we present the current state-of-the-art of decision making (DM) and machine learning (ML) and bridge the two research domains to create an integrated approach of complex problem solving based on human and computational agents. We present a novel classification of ML, emphasizing the human-in-the-loop in interactive ML (iML) and more specific on collaborative interactive ML (ciML), which we understand as a deep integrated version of iML, where humans and algorithms work hand in hand to solve complex problems. Both humans and computers have specific strengths and weaknesses and integrating humans into machine learning processes might be a very efficient way for tackling problems. This approach bears immense research potential for various domains, e.g., in health informatics or in industrial applications. We outline open questions and name future challenges that have to be addressed by the research community to enable the use of collaborative interactive machine learning for problem solving in a large scale.

Keywords

Decision making Reasoning Interactive machine learning Collaborative interactive machine learning 

Notes

Acknowledgements

We thank our colleague Henrik Mucha who provided insight and expertise that greatly assisted this research. We also thank the anonymous reviewers for their encouraging reviews.

References

  1. 1.
    Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. IEEE Intell. Inform. Bull. 15, 6–14 (2014)Google Scholar
  2. 2.
    Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)MATHGoogle Scholar
  3. 3.
    Fox, J., Glasspool, D., Bury, J.: Quantitative and qualitative approaches to reasoning under uncertainty in medical decision making. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS, vol. 2101, pp. 272–282. Springer, Heidelberg (2001). doi: 10.1007/3-540-48229-6_39 CrossRefGoogle Scholar
  4. 4.
    Ma, W., Xiong, W., Luo, X.: A model for decision making with missing, imprecise, and uncertain evaluations of multiple criteria. Int. J. Intell. Syst. 28, 152–184 (2013)CrossRefGoogle Scholar
  5. 5.
    Simon, H.A.: A behavioral model of rational choice. Q. J. Econ. 69, 99–118 (1955)CrossRefGoogle Scholar
  6. 6.
    Dequech, D.: Bounded rationality, institutions, and uncertainty. J. Econ. Issues 35, 911–929 (2001)CrossRefGoogle Scholar
  7. 7.
    Holzinger, A.: Lecture 8 biomedical decision making: reasoning and decision support. In: Biomedical Informatics, pp. 345–377. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    March, S.T., Hevner, A.R.: Integrated decision support systems: a data warehousing perspective. Decis. Support Syst. 43, 1031–1043 (2007)CrossRefGoogle Scholar
  9. 9.
    Hansson, S.O.: Decision theory: a brief introduction (2005)Google Scholar
  10. 10.
    Bell, D.E., Raiffa, H., Tversky, A.: Descriptive, normative, and prescriptive interactions in decision making. Decis. Making Descriptive Normative Prescriptive Interact. 1, 9–32 (1988)CrossRefMATHGoogle Scholar
  11. 11.
    Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading (1984)Google Scholar
  12. 12.
    Alan, D., Janet, F., Gregory, A., Russell, B.: Human-Computer Interaction. Pearson Education Limited, Harlow (2004)MATHGoogle Scholar
  13. 13.
    Kohavi, R., Provost, F.: Glossary of terms. Mach. Learn. 30, 271–274 (1998)CrossRefGoogle Scholar
  14. 14.
    Ankerst, M., Elsen, C., Ester, M., Kriegel, H.P.: Visual classification: an interactive approach to decision tree construction. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 392. ACM (1999)Google Scholar
  15. 15.
    Wakker, P., Deneffe, D.: Eliciting von neumann-morgenstern utilities when probabilities are distorted or unknown. Manage. Sci. 42, 1131–1150 (1996)CrossRefMATHGoogle Scholar
  16. 16.
    Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55, 78–87 (2012)CrossRefGoogle Scholar
  17. 17.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, Boston (1997)MATHGoogle Scholar
  18. 18.
    Martin, J.H., Jurafsky, D.: Speech and language processing. In: International 710th edn. (2000)Google Scholar
  19. 19.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005)CrossRefGoogle Scholar
  20. 20.
    Li, Q., Zheng, N., Cheng, H.: Springrobot: a prototype autonomous vehicle and its algorithms for lane detection. IEEE Trans. Intell. Transp. Syst. 5, 300–308 (2004)CrossRefGoogle Scholar
  21. 21.
    Marsland, S.: Machine Learning: An Algorithmic Perspective. CRC Press, Boca Raton (2015)Google Scholar
  22. 22.
    Ankerst, M., Ester, M., Kriegel, H.P.: Towards an effective cooperation of the user and the computer for classification. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 179–188. ACM (2000)Google Scholar
  23. 23.
    Ware, M., Frank, E., Holmes, G., Hall, M., Witten, I.H.: Interactive machine learning: letting users build classifiers. Int. J. Hum. Comput. Stud. 55, 281–292 (2001)CrossRefMATHGoogle Scholar
  24. 24.
    Fails, J.A., Olsen Jr., D.R.: Interactive machine learning. In: Proceedings of the 8th International Conference on Intelligent User Interfaces, pp. 39–45. ACM (2003)Google Scholar
  25. 25.
    Fiebrink, R., Cook, P.R., Trueman, D.: Human model evaluation in interactive supervised learning. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2011, pp. 147–156. ACM, New York (2011)Google Scholar
  26. 26.
    Fogarty, J., Tan, D., Kapoor, A., Winder, S.: Cueflik: interactive concept learning in image search. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2008, pp. 29–38. ACM, New York (2008)Google Scholar
  27. 27.
    Simard, P., Chickering, D., Lakshmiratan, A., Charles, D., Bottou, L., Suarez, C.G.J., Grangier, D., Amershi, S., Verwey, J., Suh, J.: Ice: enabling non-experts to build models interactively for large-scale lopsided problems. arXiv preprint arXiv:1409.4814 (2014)
  28. 28.
    Amershi, S., Chickering, M., Drucker, S.M., Lee, B., Simard, P., Suh, J.: Modeltracker: redesigning performance analysis tools for machine learning. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 337–346. ACM, New York (2015)Google Scholar
  29. 29.
    Talbot, J., Lee, B., Kapoor, A., Tan, D.S.: Ensemblematrix: interactive visualization to support machine learning with multiple classifiers. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 1283–1292. ACM, New York (2009)Google Scholar
  30. 30.
    Ankerst, M., Ester, M., Kriegel, H.P.: Towards an effective cooperation of the user and the computer for classification. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 179–188. ACM, New York (2000)Google Scholar
  31. 31.
    Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3, 119–131 (2016)CrossRefGoogle Scholar
  32. 32.
    Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.-M., Palade, V.: Towards interactive Machine Learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 81–95. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-45507-5_6 CrossRefGoogle Scholar
  33. 33.
    Baron, J.: Normative Models of Judgment and Decision Making. Wiley, New York (2004)CrossRefGoogle Scholar
  34. 34.
    Raiffa, H.: Applied statistical decision theory (1974)Google Scholar
  35. 35.
    Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)MATHGoogle Scholar
  36. 36.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001)MATHGoogle Scholar
  37. 37.
    Tulabandhula, T., Rudin, C.: Machine learning with operational costs. J. Mach. Learn. Res. 14, 1989–2028 (2013)MathSciNetMATHGoogle Scholar
  38. 38.
    Pitz, G.F., Sachs, N.J.: Judgment and decision: theory and application. Annu. Rev. Psychol. 35, 139–164 (1984)CrossRefGoogle Scholar
  39. 39.
    Fischhoff, B.: Judgment and decision making. Wiley Interdisc. Rev. Cogn. Sci. 1, 724–735 (2010)CrossRefGoogle Scholar
  40. 40.
    Russakovsky, O., Li, L.J., Fei-Fei, L.: Best of both worlds: human-machine collaboration for object annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2121–2131 (2015)Google Scholar
  41. 41.
    Rapoport, A.: Decision Theory and Decision Behaviour: Normative and Descriptive Approaches, vol. 15. Springer, Amsterdam (2013)MATHGoogle Scholar
  42. 42.
    Bazerman, M.H., Moore, D.A.: Judgment in managerial decision making (2013)Google Scholar
  43. 43.
    Bonner, S.E.: Judgment and Decision Making in Accounting. Prentice Hall, Upper Saddle River (2008)Google Scholar
  44. 44.
    Robert, S.: Informationsverarbeitung in Prognosen: Experimentelle Evidenz. dissertation, University of Osnabrueck (2016)Google Scholar
  45. 45.
    Goldstein, W.M., Hogarth, R.M.: Research on Judgment and Decision Making: Currents, Connections, and Controversies. Cambridge University Press, Cambridge (1997)Google Scholar
  46. 46.
    Milkman, K.L., Chugh, D., Bazerman, M.H.: How can decision making be improved? Perspect. Psychol. Sci. 4, 379–383 (2009)CrossRefGoogle Scholar
  47. 47.
    Baron, J.: Thinking and Deciding. Cambridge University Press, Cambridge (2000)Google Scholar
  48. 48.
    Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases. In: Wendt, D., Vlek, C. (eds.) Utility, Probability, and Human Decision Making, pp. 1124–1131. Springer, Amsterdam (1974)Google Scholar
  49. 49.
    Libby, R.: Accounting and Human Information Processing: Theory and Applications. Prentice Hall, Englewood Cliffs (1981)Google Scholar
  50. 50.
    Ashton, R.H.: Human Information Processing in Accounting. American Accounting Association, Sarasota (1982)Google Scholar
  51. 51.
    Over, D.: Rationality and the normative/descriptive distinction. In: Blackwell Handbook of Judgment and Decision Making, London, pp. 3–18 (2004)Google Scholar
  52. 52.
    Gilovich, T., Griffin, D., Kahneman, D.: Heuristics and Biases: The Psychology of Intuitive Judgment. Cambridge University Press, New York (2002)CrossRefGoogle Scholar
  53. 53.
    Newell, B.R.: Judgment under uncertainty (2013)Google Scholar
  54. 54.
    Tversky, A., Kahneman, D.: Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev. 90, 293 (1983)CrossRefGoogle Scholar
  55. 55.
    Tversky, A., Kahneman, D.: Availability: a heuristic for judging frequency and probability. Cogn. Psychol. 5, 207–232 (1973)CrossRefGoogle Scholar
  56. 56.
    Mokdad, A.H., Marks, J.S., Stroup, D.F., Gerberding, J.L.: Actual causes of death in the United States, 2000. JAMA 291, 1238–1245 (2004)CrossRefGoogle Scholar
  57. 57.
    Strack, F., Mussweiler, T.: Explaining the enigmatic anchoring effect: mechanisms of selective accessibility. J. Pers. Soc. Psychol. 73, 437 (1997)CrossRefGoogle Scholar
  58. 58.
    Plous, S.: Thinking the unthinkable: the effects of anchoring on likelihood estimates of nuclear war1. J. Appl. Soc. Psychol. 19, 67–91 (1989)CrossRefGoogle Scholar
  59. 59.
    Ritov, I.: Anchoring in simulated competitive market negotiation. Organ. Behav. Hum. Decis. Process. 67, 16–25 (1996)CrossRefGoogle Scholar
  60. 60.
    Galinsky, A.D., Mussweiler, T.: First offers as anchors: the role of perspective-taking and negotiator focus. J. Pers. Soc. Psychol. 81, 657 (2001)CrossRefGoogle Scholar
  61. 61.
    Chapman, G.B., Johnson, E.J.: Incorporating the irrelevant: anchors in judgments of belief and value. In: The Psychology of Intuitive Judgment, Heuristics and Biases, pp. 120–138 (2002)Google Scholar
  62. 62.
    Wilson, T.D., Houston, C.E., Etling, K.M., Brekke, N.: A new look at anchoring effects: basic anchoring and its antecedents. J. Exp. Psychol. Gen. 125, 387 (1996)CrossRefGoogle Scholar
  63. 63.
    Mussweiler, T., Strack, F.: Comparing is believing: a selective accessibility model of judgmental anchoring. Eur. Rev. Soc. Psychol. 10, 135–167 (1999)CrossRefGoogle Scholar
  64. 64.
    Chapman, G.B., Johnson, E.J.: Anchoring, activation, and the construction of values. Organ. Behav. Hum. Decis. Process. 79, 115–153 (1999)CrossRefGoogle Scholar
  65. 65.
    Furnham, A., Boo, H.C.: A literature review of the anchoring effect. J. Socio-Econ. 40, 35–42 (2011)CrossRefGoogle Scholar
  66. 66.
    Gigerenzer, G.: Why the distinction between single-event probabilities and frequencies is important for psychology (and vice versa). In: Subjective Probability, pp. 129–161 (1994)Google Scholar
  67. 67.
    Gigerenzer, G., Czerlinski, J., Martignon, L.: How good are fast and frugal heuristics? In: Shanteau, J., Mellers, B.A., Schum, D.A. (eds.) Decision Science and Technology, pp. 81–103. Springer, New York (1999)Google Scholar
  68. 68.
    Gigerenzer, G., Hoffrage, U., Kleinbölting, H.: Probabilistic mental models: a brunswikian theory of confidence. Psychol. Rev. 98, 506 (1991)CrossRefGoogle Scholar
  69. 69.
    Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica: J. Econometric Soc. 47(2), 263–291 (1979)CrossRefMATHGoogle Scholar
  70. 70.
    Xu, L., Jackowski, M., Goshtasby, A., Roseman, D., Bines, S., Yu, C., Dhawan, A., Huntley, A.: Segmentation of skin cancer images. Image Vis. Comput. 17, 65–74 (1999)CrossRefGoogle Scholar
  71. 71.
    Królczyk, G., Legutko, S., Raos, P.: Cutting wedge wear examination during turning of duplex stainless steel. Tehnički Vjesnik-Technical Gazette 20, 413–418 (2013)Google Scholar
  72. 72.
    Baron, J.: Rationality and Intelligence. Cambridge University Press, New York (2005)Google Scholar
  73. 73.
    Lee, S., Holzinger, A.: Knowledge discovery from complex high dimensional data. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds.) Solving Large Scale Learning Tasks. Challenges and Algorithms. LNCS (LNAI), vol. 9580, pp. 148–167. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-41706-6_7 CrossRefGoogle Scholar
  74. 74.
    Holzinger, A., Malle, B., Giuliani, N.: On graph extraction from image data. In: Slezak, D., Peters, J.F., Tan, A.H., Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014. LNAI, vol. 8609, pp. 552–563. Springer, Heidelberg (2014)Google Scholar
  75. 75.
    Valdez, A.C., Dehmer, M., Holzinger, A.: Application of graph entropy for knowledge discovery and data mining in bibliometric data. In: Dehmer, M., Emmert-Streib, F., Chen, Z., Li, X., Shi, Y. (eds.) Mathematical Foundations and Applications of Graph Entropy, pp. 259–272. Wiley, New York (2016)CrossRefGoogle Scholar
  76. 76.
    Cao, X., Balakrishnan, R.: Visionwand: interaction techniques for large displays using a passive wand tracked in 3d. In: Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, UIST 2003, pp. 173–182. ACM, New York (2003)Google Scholar
  77. 77.
    Jones, B.R., Benko, H., Ofek, E., Wilson, A.D.: Illumiroom: peripheral projected illusions for interactive experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 869–878. ACM, New York (2013)Google Scholar
  78. 78.
    Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. In: Photonics for industrial applications, International Society for Optics and Photonics, pp. 282–292 (1995)Google Scholar
  79. 79.
    Azuma, R.T.: A survey of augmented reality. Presence: Teleoperators Virtual Environ. 6, 355–385 (1997)CrossRefGoogle Scholar
  80. 80.
    Fuchs, H., et al.: Augmented reality visualization for laparoscopic surgery. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 934–943. Springer, Heidelberg (1998). doi: 10.1007/BFb0056282 CrossRefGoogle Scholar
  81. 81.
    Paelke, V., Röcker, C., Koch, N., Flatt, H., Büttner, S.: User interfaces for cyber-physical systems. at-Automatisierungstechnik 63, 833–843 (2015)Google Scholar
  82. 82.
    Büttner, S., Sand, O., Röcker, C.: Extending the design space in industrial manufacturing through mobile projection. In: Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, MobileHCI 2015, pp. 1130–1133. ACM, New York (2015)Google Scholar
  83. 83.
    Büttner, S., Funk, M., Sand, O., Röcker, C.: Using head-mounted displays and in-situ projection for assistive systems - a comparison. In: Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, vol. 8. ACM (2016)Google Scholar
  84. 84.
    Wilson, A.G., Dann, C., Lucas, C.G., Xing, E.P.: The human kernel. arXiv preprint arXiv:1510.07389 (2015)

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sebastian Robert
    • 1
  • Sebastian Büttner
    • 2
  • Carsten Röcker
    • 1
    • 2
    • 3
  • Andreas Holzinger
    • 3
  1. 1.Fraunhofer-Institute of Optronics, System Technologies and Image Exploitation, Application Center Industrial Automation (IOSB-INA)LemgoGermany
  2. 2.Ostwestfalen-Lippe University of Applied SciencesLemgoGermany
  3. 3.Holzinger Group, HCI-KDD, Institute for Medical Informatics, Statistics and DocumentationMedical University GrazGrazAustria

Personalised recommendations