Efficient Image Authentication Scheme Using Genetic Algorithms

  • Arjun Londhey
  • Manik Lal Das
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10109)


We present an efficient image authentication scheme using Genetic algorithm (GA). Using the crossover and mutation process of GA the original image is randomized into a binary string. A pairing function is then used as a checksum function that converts the binary string to a fixed length digest of the original image. A random permutation is used as the secret parameter between the authenticator generator and verifier. The scheme provides a non-reversible compression and collision resistance property, and is secure against chosen plaintext attacks. The experimental results show that the proposed scheme is efficient in comparisons to standard cryptographic authentication algorithms.


Image authentication Genetic algorithm Multimedia security Content protection 


  1. 1.
    Furht, B., Kirovski, D.: Multimedia Security Handbook. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  2. 2.
    Wan, R.Z., Lin, C.F., Lin, J.C.: Image hiding by optimal LSB substitution and genetic algorithm. Pattern Recogn. 34(3), 671–683 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Afarin, R., Mozaffari, S.: Image encryption using genetic algorithm. In: proceedings of the Conference of Machine Vision and Image Processing, pp. 441–445 (2013)Google Scholar
  4. 4.
    Khodaei, M., Faez, K.: Image hiding by using genetic algorithm and LSB substitution. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds.) ICISP 2010. LNCS, vol. 6134, pp. 404–411. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13681-8_47 CrossRefGoogle Scholar
  5. 5.
    Wang, X., Pang, K., Zhou, X., Zhou, Y.: A visual model-based perceptual image hash for content authentication. IEEE Trans. Inf. Forensics Secur. 10(7), 1336–1349 (2014)CrossRefGoogle Scholar
  6. 6.
    Liu, F., Wang, H., Cheng, L.-M., Ho, A.T.S., Li, S.: Enhanced perceptual image authentication with tamper localization and self-restoration. In proceedings of IEEE International Conference on Multimedia and Expo, pp. 1–6 (2014)Google Scholar
  7. 7.
    Monga, V., Mhcak, M.K.: Robust and secure image hashing via non-negative matrix factorizations. IEEE Trans. Inf. Forensics Secur. 2(3), 376–390 (2007)CrossRefGoogle Scholar
  8. 8.
    Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing. IEEE Trans. Inf. Forensics Secur. 1(2), 215–230 (2006)CrossRefGoogle Scholar
  9. 9.
    Enayatifar, R., Abdullah,A.H.: Image security via genetic algorithm. In: proceedings of International Conference on Computer and Software Modeling, pp. 198–203 (2011)Google Scholar
  10. 10.
    Ismail, I.A., Amin, M., Diab, H.: A digital image encryption algorithm based a composition of two chaotic logistic maps. Int. J. Netw. Secur. 11(1), 1–10 (2010)Google Scholar
  11. 11.
    Chang, C.C., Hu, Y.S., Lu, T.C.: A watermarking-based image ownership and tampering authentication scheme. Pattern Recogn. Lett. 27(5), 439–446 (2006)CrossRefGoogle Scholar
  12. 12.
    Ahmed, F., Siyal, M.Y., Abbas, V.U.: A secure and robust hash-based scheme for image authentication. J. Signal Process. 90(5), 1456–1470 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Vanstone, S., van Oorschot, P., Menezes, A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)MATHGoogle Scholar
  14. 14.
    Tang, Y.L., Hwang, M.S., Yang, C.R.: An image authentication scheme based on digital signatures. Pak. J. Appl. Sci. 2(5), 553–557 (2002)CrossRefGoogle Scholar
  15. 15.
    Holland, J.H.: Genetic algorithms. Sci. Am., 66–72 (1992)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DA-IICTGandhinagarIndia

Personalised recommendations