Advertisement

Biodegradable Nanocomposites for Energy Harvesting, Self-healing, and Shape Memory

  • Deepu Thomas
  • John-John Cabibihan
  • Sasi Kumar
  • S. K. Khadheer Pasha
  • Dipankar Mandal
  • Meena Laad
  • Bal Chandra Yadav
  • S. I. Patil
  • Anil Ghule
  • Payal Mazumdar
  • Sunita Rattan
  • Kishor Kumar Sadasivuni
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

This review aims to survey the rapidly expanding field of energy harvesting, self-healing, and shape-memory biodegradable composites by reviewing the major successful autonomic designs developed over the last decade. We have discussed the characterization of the composite and dispersion of the filler by different methods such as grafting, chemical modifications. Also, we have highlighted the recent work on polymers and blends, hydrogels of biocomposites and their controllable approach for adjusting desired properties. In addition to above, the design considerations critical to the successful integration of these components in the commercial applications have been discussed. These materials have huge demand in the development of robust modeling and design tools based on a fundamental understanding of the complex and time-variant properties of the material and mechanization structure in diverse environments. The potential directions for future advancement in this field are also discussed.

Keywords

Biocomposites Nanogenerators Biodegradable Shape recovery 

Notes

Acknowledgments

This publication was made possible by the support of an NPRP grant from the Qatar National Research Fund (NPRP 7-673-2-251). The statements made herein are solely the responsibility of the authors.

References

  1. 1.
    Sodano HA, Inman DJ, Parck G (2005) Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Struct 16:799–807CrossRefGoogle Scholar
  2. 2.
    Ren K, Liu Y, Hofmann H, Zhang QM (2007) An active energy harvesting scheme with an electroactive polymer. Appl Phys Lett 91(13):132910CrossRefGoogle Scholar
  3. 3.
    Wilkie W, High J, Mirick P, Fox R, Little B, Bryant R, Hellbaum R, Jalink A (2000) Low-cost piezocomposite actuator for structural control applications. Proceedings of the SPIE’s 7th international symposium on smart structures and materials, Newport Beach, CaliforniaGoogle Scholar
  4. 4.
    High JW, Wilkie WK (2003) Piezoelectric macro-fiber composite actuator and method for making same. US Patent 6629341Google Scholar
  5. 5.
    Ionov L (2010) Actively-moving materials based on stimuli-responsive polymers. J Mater Chem 20:3382–3390CrossRefGoogle Scholar
  6. 6.
    Behl M, Lendlein A (2007) Actively moving polymers. Soft Matter 3:58–67CrossRefGoogle Scholar
  7. 7.
    Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057CrossRefGoogle Scholar
  8. 8.
    Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558CrossRefGoogle Scholar
  9. 9.
    Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape memory polymer. Nature 434:879–882CrossRefGoogle Scholar
  10. 10.
    Jiang H, Kelch S, Lendlein A (2006) Polymers move in response to light. Adv Mater 18:1471–1475CrossRefGoogle Scholar
  11. 11.
    Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105CrossRefGoogle Scholar
  12. 12.
    Yoo HJ, Jung YC, Sahoo NG, Cho JW (2006) Polyurethane-carbon nanotube nanocomposites prepared by in-situ polymerization with electroactive shape memory. J Macromol Sci Phys 4:441–451Google Scholar
  13. 13.
    Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRefGoogle Scholar
  14. 14.
    Metcalfe A, Desfaits AC, Salazkin I, Yahia LH, Sokolowski WM, Raymond J (2003) Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497CrossRefGoogle Scholar
  15. 15.
    Sokolowski W, Metcalfe A, Hayashi S, Yahia LH, Raymond J (2007) Medical applications of shape memory polymers. Biomed Mater 2:S23CrossRefGoogle Scholar
  16. 16.
    Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K (2008) Strong, tailored, biocompatible shape-memory polymer networks. Biomed Mater 18:2428–2435Google Scholar
  17. 17.
    Zhou SB, Zheng XT, Yu XJ (2007) Hydrogen bonding interaction of poly (d,l-lactide)/hydroxyapatite nanocomposites. Chem Mater 2:247–253CrossRefGoogle Scholar
  18. 18.
    Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly(d,l-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295CrossRefGoogle Scholar
  19. 19.
    Bettinger CJ, Bao Z (2010) Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22(5):651–655CrossRefGoogle Scholar
  20. 20.
    Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2009) Foldable printed circuit boards on paper substrates. Adv Funct Mater 20(1):28–35CrossRefGoogle Scholar
  21. 21.
    Bettinger CJ, Bruggeman JP, Misra A, Borenstein JT, Langer R (2009) Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 30(17):3050–3057CrossRefGoogle Scholar
  22. 22.
    Meredith P, Bettinger CJ, Irimia-Vladu M, Mostert AB, Schwenn PE (2013) Electronic and optoelectronic materials and devices inspired by nature. Rep Prog Phys 76(3):034501CrossRefGoogle Scholar
  23. 23.
    Irimia-Vladu M, Głowacki ED, Troshin PA, Schwabegger G, Leonat L, Susarova DK, Krystal O, Ullah M, Kanbur Y, Bodea MA, Razumov VF (2012) Indigo—from jeans to semiconductors: indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater 24(3):321CrossRefGoogle Scholar
  24. 24.
    Irimia-Vladu M, Troshin PA, Reisinger M, Shmygleva L, Kanbur Y, Schwabegger G, Bodea M, Schwödiauer R, Mumyatov A, Fergus JW, Razumov VF (2010) Edible electronics: biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater 20(23):4017CrossRefGoogle Scholar
  25. 25.
    Irimia-Vladu M, Troshin PA, Reisinger M, Shmygleva L, Kanbur Y, Schwabegger G, Bodea M, Schwödiauer R, Mumyatov A, Fergus JW, Razumov VF (2010) Biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater 20(23):4069–4076CrossRefGoogle Scholar
  26. 26.
    Hwang S-W, Kim DH, Tao H, Kim TI, Kim S, Yu KJ, Panilaitis B, Jeong JW, Song JK, Omenetto FG, Rogers J (2013) Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv Funct Mater 23(33):4087–4093CrossRefGoogle Scholar
  27. 27.
    Yang C, Liu P (2009) Water-dispersed conductive polypyrroles doped with lignosulfonate and the weak temperature dependence of electrical conductivity. Ind Eng Chem Res 48(21):9498–9503CrossRefGoogle Scholar
  28. 28.
    Pelrine RE, Kornbluk RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators, A 64:77–85CrossRefGoogle Scholar
  29. 29.
    Bar-Cohen Y (2001) Electroactive polymer (EAP) actuator as artificial muscles. SPIE publication, Washington, DCGoogle Scholar
  30. 30.
    Petit L, Guifard B, Seveyrat L, Guyomar D (2008) Actuating abilities of electroactive carbon nanopowder/polyurethane composite films. Sens Actuators, A 148:105–110CrossRefGoogle Scholar
  31. 31.
    Lebrun L, Guyomar D, Guiffard B, Cottinet P-J, Putson C (2009) The Characterisation of the harvesting capabilities of an electrostrictive polymer composite. Sens Actuators, A 153:251–257CrossRefGoogle Scholar
  32. 32.
    van der Zwaag S (ed) (2007) Self-healing materials: an alternative approach to 20 centuries of materials science, vol 100. Springer, Dordrecht, The NetherlandsGoogle Scholar
  33. 33.
    Yuan YC, Yin T, Rong MZ, Zhang MQ (2008) Self-healing in polymers and polymer composites. Concepts, realization and outlook: a review. Express Polym Lett 2(4): 238–250Google Scholar
  34. 34.
    Peniche C, Argüelles-Monal W, Goycoolea FM (2008) Chitin and chitosan: major sources, properties and applications. Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, The Netherlands, pp 517–542CrossRefGoogle Scholar
  35. 35.
    Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465CrossRefGoogle Scholar
  36. 36.
    Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspiration and Biomimetics 2(1):P1–P9CrossRefGoogle Scholar
  37. 37.
    Chen B, Payne S, Yarin AL (2012) Electrospinning core—shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J Appl Polym Sci 129(3):1383–1393Google Scholar
  38. 38.
    Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014) Self-healing transparent core—shell nanofiber coatings for anti-corrosive protection. J Mater Chem A 2(19):7045–7053CrossRefGoogle Scholar
  39. 39.
    Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014) Hybrid self-healing matrix using core—shell nanofibers and capsuleless microdroplets. ACS Appl Mater Interfaces 6:10461–10468CrossRefGoogle Scholar
  40. 40.
    Sinha-Ray S, Pelot DD, Zhou ZP, Rahman A, Wub XF, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22:9138–9146CrossRefGoogle Scholar
  41. 41.
    Wu XF, Yarin AL (2013) Recent progress in interfacial toughening and damage self-healing of polymer composites based on electrospun and solution-blown nanofibers: an overview. J Appl Polym Sci 129:2225–2237CrossRefGoogle Scholar
  42. 42.
    Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522CrossRefGoogle Scholar
  43. 43.
    Williams KA, Dreyer DR, Bielawski CW (2008) The underlying chemistry of self-healing materials. MRS Bull 33:759–765CrossRefGoogle Scholar
  44. 44.
    Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composite: mimicking nature to enhance performance. Bioinsp Biomim 2:1–9CrossRefGoogle Scholar
  45. 45.
    van der Zwaag S, van Dijk NH, Jonkers HM, Mookhoek SD, Sloof WG (2009) Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character. Philos Trans R Soc A 367A:1689–1704CrossRefGoogle Scholar
  46. 46.
    Samra K, Galaev IY, Mattiasson B (2000) Thermosensitive, reversibly cross-linking gels with a shape “memory”. Angew Chem Int Ed 39:2364–2367CrossRefGoogle Scholar
  47. 47.
    Hu Z, Zhang X, Li Y (1995) Synthesis and application of modulated polymer gels. Science 269:525–527CrossRefGoogle Scholar
  48. 48.
    Liu GQ, Ding XB, Cao YP, Zheng ZH, Peng YX (2004) Shape memory of hydrogen-bonded polymer network/poly (ethylene glycol) complexes. Macromolecules 37(6):2228–2232CrossRefGoogle Scholar
  49. 49.
    Osada Y, Matsuda A (1995) Shape memory in hydrogels. Nature 376:219–221CrossRefGoogle Scholar
  50. 50.
    Beloshenko VA, Varyukhin VN, Voznyak YV (2005) Electrical properties of carbon-containing epoxy compositions under shape memory effect realization. Compos A 36:65–70CrossRefGoogle Scholar
  51. 51.
    Kitahara S, Nagata N (1991) Cross-linked polymer having shape memorizing property, method of its use and molded article having shape memory. US Patent 5043396Google Scholar
  52. 52.
    Yang B, Huang WM, Li C, Li L, Chor JH (2005) Qualitative separation of the effects of carbon nano-powder and moisture on the glass transition temperature of polyurethane shape memory polymer. Scripta Mater 53:105–107CrossRefGoogle Scholar
  53. 53.
    Anderson DG, Burdick JA, Langer R (2004) Smart biomaterials. Science 305:1923–1924CrossRefGoogle Scholar
  54. 54.
    Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRefGoogle Scholar
  55. 55.
    Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo (e-caprolactone) segments showing shape-memory properties. PNAS 98(3):842–847Google Scholar
  56. 56.
    Lendlein A, Schmidt AM, Schroeter M, Langer R (2005) Shape-memory polymer networks from Oligo (e-caprolactone) Dimethacrylates. J Polym Sci A 43:1369–1381CrossRefGoogle Scholar
  57. 57.
    Lu X, Sun Z, Cai W (2007) Structure and shape memory effects of poly(l-lactide) and its copolymers. Physica Scripta T:T129. Second international symposium on functional materials, pp 231–235Google Scholar
  58. 58.
    Lu X, Cai W, Zhao L (2005) Study on the shape memory behavior of poly(l-lactide). Mater Sci Forum 475–479(III). PRICM 5: the fifth pacific rim international conference on advanced materials and processing, pp 2399–2402Google Scholar
  59. 59.
    Shikinami Y (2001) Shape memory biodegradable and absorbable material. US Patent 6281262 B1Google Scholar
  60. 60.
    Jordan G (2008) Balloon geometry for delivery and deployment of shape memory polymer stent with flares. US Patent 20080132988Google Scholar
  61. 61.
    Moaddeb S, Shaolian SM, Shaoulian E, Rhee R, Anderson SC (2007) Shape memory devices and methods for reshaping heart anatomy. US Patent 7285087Google Scholar
  62. 62.
    Mather PT, Liu C, Campo CJ (2007) Blends of amorphous and semicrystalline polymers having shape memory properties. US Patent 7208550Google Scholar
  63. 63.
    Sauter T, Heuchel M, Kratz K, Lendlein A (2013) Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests. Polym Rev 53:6–40CrossRefGoogle Scholar
  64. 64.
    Kim KN, Chun J, Chae SA, Ahn CW, Kim IW, Kim SW, Wang ZL, Baik JM (2015) Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy 14:87–94CrossRefGoogle Scholar
  65. 65.
    Eddiai A, Meddad M, Mazroui M, Boughale Y, Idiri M, Khanfer R, Rguitie M (2016) Strain effects on an electrostrictive polymer composite for power harvesting: experiments and modeling. Polym Adv Technol 27:677–684CrossRefGoogle Scholar
  66. 66.
    Fukada E (1995) Piezoelectricity of biopolymers. Biorheology 32(6):593–609CrossRefGoogle Scholar
  67. 67.
    Schnepp Z, Mitchells J, Mann S, Hall SR (2010) Biopolymer-mediated synthesis of anisotropic piezoelectric nanorods. Chem Commun 46:4887–4889CrossRefGoogle Scholar
  68. 68.
    Li T, Zeng K (2013) Nanoscale piezoelectric and ferroelectric behaviors of seashell by piezoresponse force microscopy. J Appl Phys 113:187202CrossRefGoogle Scholar
  69. 69.
    Fukada E (1968) Piezoelectricity as a fundamental property of wood. Wood Sci Technol 2(4):299–307CrossRefGoogle Scholar
  70. 70.
    Kim JH, Yun S, Kim JH, Kim J (2009) Fabrication of piezoelectric cellulose paper and audio application. J Bionic Eng 6:18–21CrossRefGoogle Scholar
  71. 71.
    Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870CrossRefGoogle Scholar
  72. 72.
    Nejadnik MR, Yang X, Bongio M, Alghamdi HS, van den Beucken JJJP, Huysmans MC, Jansen JA, Hilborn J, Ossipov D, Leeuwenburgh SCG (2014) Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomaterials 35:6918–6929CrossRefGoogle Scholar
  73. 73.
    Spoljaric S, Salminen A, Dang Luong N, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117CrossRefGoogle Scholar
  74. 74.
    Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221CrossRefGoogle Scholar
  75. 75.
    Hu JL, Mondal S (2005) Structural characterization and mass transfer properties of segmented polyurethane: influence of block length of hydrophilic segments. Polym Int 54:764–771CrossRefGoogle Scholar
  76. 76.
    Hu JL, Yang Zh, Ji FL, Liu YQ (2005) Crosslinked polyurethanes with shape memory properties. Polym Int 54:854–859CrossRefGoogle Scholar
  77. 77.
    Beloshenko VA, Varyukhin VN, Voznyak YV (2005) The shape memory effect in polymers. Russ Chem Rev 74:265–283CrossRefGoogle Scholar
  78. 78.
    Voit W, Ware T, Dasari RR, Smith P, Danz L, Simon D, Barlow S, Marder SR, Gall K (2010) High-strain shape-memory polymers. Adv Funct Mater 20:162–171CrossRefGoogle Scholar
  79. 79.
    Zhang S, Yu Z, Govender T, Luo H, Li B (2008) A novel supramolecular shape memory material based on partial α-CD–PEG inclusion complex. Polymer 49:3205–3210CrossRefGoogle Scholar
  80. 80.
    Yu Z, Liu Y, Fan M, Meng X, Li B, Zhang S (2010) Effects of solvent, casting temperature, and guest/host stoichiometries on the properties of shape memory material based on partial α-CD-PEG inclusion complex. J Polym Sci Part B: Polym Phys 48:951–957CrossRefGoogle Scholar
  81. 81.
    Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10:20–28CrossRefGoogle Scholar
  82. 82.
    Chen MC, Tsai HW, Chang Y, Lai WY, Mi FL, Liu CT, Wong HS, Sung HW (2007) Rapidly self-expandable polymeric stents with a shape-memory property. Biomacromolecules 8:2774–2780CrossRefGoogle Scholar
  83. 83.
    Luo H, Hu J, Zhu Y, Zhang S, Fan Y, Ye G (2012) Achieving shape memory: reversible behaviors of cellulose–PU blends in wet–dry cycles. J Appl Polym Sci 125:657–665CrossRefGoogle Scholar
  84. 84.
    Ishida K, Hortensius R, Luo X, Mather PT (2012) Soft bacterial polyester-based shape memory nanocomposites featuring reconfigurable nanostructure. J Polym Sci Part B: Polym Phys 50:387–393CrossRefGoogle Scholar
  85. 85.
    Xu J, Song J (2010) High performance shape memory polymer networks based on rigid nanoparticle cores. Proc Natl Acad Sci 107:7652–7657CrossRefGoogle Scholar
  86. 86.
    Filion TM, Xu J, Prasad ML, Song J (2011) In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites. Biomaterials 32:985–991CrossRefGoogle Scholar
  87. 87.
    Lee KM, Knight PT, Chung T, Mather PT (2008) Polycaprolactone—POSS chemical/physical double networks. Macromolecules 41:4730–4738CrossRefGoogle Scholar
  88. 88.
    Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2011) Microstructure and phase behavior of POSS/PCL shape memory nanocomposites. Macromolecules 44:5682–5692CrossRefGoogle Scholar
  89. 89.
    Bothe M, Mya KY, MLin JE, Yeo CC, Lu XH, He C, Pretsch T (2012) Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks. Soft Matter 8: 965–972Google Scholar
  90. 90.
    Yu X, Zhou S, Zheng X, Guo T, Xiao Y, Song B (2009) A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity. Nanotechnology 20:235702 (9 pp)Google Scholar
  91. 91.
    Shen T, Liang L, Lu M (2011) Novel biodegradable shape memory composites based on PLA and PCL crosslinked by polyisocyanate. International conference on agricultural and biosystems engineering, advances in biomedical engineering, vols 1–2Google Scholar
  92. 92.
    Meng Q, Hu J, Ho K, Ji F, Chen S (2009) The shape memory properties of biodegradable, chitosan/poly(l-lactide) composites. J Polym Environ 17:212–224CrossRefGoogle Scholar
  93. 93.
    Tsujimoto T, Takayama T, Uyama H (2015) Biodegradable shape memory polymeric material from epoxidized soybean oil and polycaprolactone. Polymer 7:2165–2174CrossRefGoogle Scholar
  94. 94.
    Wei X, Liu J (2008) Power sources and electrical recharging strategies for implantable medical devices. Front Energy Power Eng Chin 2(1):1–13CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Deepu Thomas
    • 1
  • John-John Cabibihan
    • 2
  • Sasi Kumar
    • 3
  • S. K. Khadheer Pasha
    • 4
  • Dipankar Mandal
    • 5
  • Meena Laad
    • 6
  • Bal Chandra Yadav
    • 7
  • S. I. Patil
    • 8
  • Anil Ghule
    • 9
  • Payal Mazumdar
    • 10
  • Sunita Rattan
    • 10
  • Kishor Kumar Sadasivuni
    • 2
  1. 1.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.Mechanical and Industrial Engineering DepartmentQatar UniversityDohaQatar
  3. 3.Chemistry Division, School of Advanced SciencesVIT UniversityVelloreIndia
  4. 4.Sensors Laboratory, School of Advanced SciencesVIT UniversityVelloreIndia
  5. 5.Organic Nano-Piezoelectric Device Laboratory, Department of PhysicsJadavpur UniversityKolkataIndia
  6. 6.Symbiosis Institute of Technology (SIT)Symbiosis International University (SIU)PuneIndia
  7. 7.Nanomaterials and Sensors Research Laboratory, Department of Applied PhysicsBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  8. 8.Department of PhysicsUniversity of PunePune-7India
  9. 9.Department of ChemistryShivaji UniversityKolhapurIndia
  10. 10.Amity Institute of Applied SciencesAmity University Uttar PradeshNoidaIndia

Personalised recommendations