Introduction: Modern Perspectives in Type Theoretical Semantics

  • Stergios Chatzikyriakidis
  • Zhaohui Luo
Part of the Studies in Linguistics and Philosophy book series (SLAP, volume 98)


Type theories, from the early days of Montague Semantics (Montague 1974) to the recent work of using rich or modern type theories, have a long history of being employed as foundational languages of natural language semantics. In this introductory chapter, we will describe and discuss the development of type theories as foundational languages of mathematics, as well as their applications as foundational languages for formal semantics. In the end, a brief description of each chapter in the volume will follow.


  1. The Agda proof assistant (version 2) (2008). Available from the web page:
  2. Bekki, D. (2014). Representing anaphora with dependent types. LACL 2014, LNCS 8535.Google Scholar
  3. Betarte, G. (1998). Dependent record types and algebraic structures in type theory. PhD thesis, Chalmers University of Technology.Google Scholar
  4. Betarte, G., & Tasistro, A. (1998). Extension of Martin-Löf’s type theory with record types and subtyping. In G. Sambin & J. Smith (eds.), Twenty-five Years of Constructive Type Theory. Oxford: Oxford University Press.Google Scholar
  5. Boldini, P. (2000). Formalizing context in intuitionistic type theory. Fundamenta Informaticae, 42(2), 1–23.Google Scholar
  6. Callaghan, P., & Luo, Z. (2001). An implementation of LF with coercive subtyping and universes. Journal of Automated Reasoning, 27(1), 3–27.CrossRefGoogle Scholar
  7. Chatzikyriakidis, S., &  Luo, Z. (2014). Natural language inference in Coq. Journal of Logic, Language and Information, 23(4).Google Scholar
  8. Church, A. (1940). A formulation of the simple theory of types. The Journal of Symbolic Logic, 5(1), 56–68.CrossRefGoogle Scholar
  9. R. Cooper. (2005). Records and record types in semantic theory. Journal of Logic and Compututation, 15(2).Google Scholar
  10. Cooper, R., Dobnik, S., Larsson, S., & Lappin, S. (2015). Probabilistic type theory and natural language semantics. LiLT (Linguistic Issues in Language Technology), 10.Google Scholar
  11. The Coq Team (2007). The Coq Proof Assistant Reference Manual (Version 8.1), INRIA.Google Scholar
  12. Coquand, Th, & Huet, G. (1988). The calculus of constructions. Information and Computation, 76(2/3),Google Scholar
  13. Dapoigny, R., & Barlatier, P. (2009). Modeling contexts with dependent types. Fundamenta Informaticae, 21.Google Scholar
  14. Gallin, D. (1975). Intensional and higher-order modal logic: with applications to Montague semantics. Amsterdam: North-Holland.Google Scholar
  15. Groenendijk, J.,& Stokhof, M. (1990). Dynamic Montague grammar. Proceedings of the Second Symposion on Logic and Language.Google Scholar
  16. Groenendijk, J., & Stokhof, M. (1991). Dynamic predicate logic. Linguistics and Philosophy, 14(1).Google Scholar
  17. Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 15.Google Scholar
  18. Kahle, R., & Schroeded-Heister, P. (Eds.). (2006). Proof-Theoretic Semantics. Special Issue of Synthese, 148(3).Google Scholar
  19. Kamp, H., & Reyle, U. (1993). From discourse to logic. The Netherlands: Kluwer.Google Scholar
  20. Luo, Z. (1994). Computation and reasoning: a type theory for computer science. Oxford: Oxford University Press.Google Scholar
  21. Luo, Z. (2012). Formal semantics in modern type theories with coercive subtyping. Linguistics and Philosophy, 35(6), 491–513.CrossRefGoogle Scholar
  22. Luo, Z. (2014). Formal semantics in modern type theories: is it model-theoretic, proof-theoretic, or both? In Invited talk at Logical Aspects of Computational Linguistics 2014 (LACL 2014), Toulouse. LNCS (Vol. 8535, pp. 177–188).Google Scholar
  23. Luo, Z., & Callaghan, P. (1998). Coercive subtyping and lexical semantics (extended abstract). LACL’98 (extended Abstracts), Available in Request to the First Author or as
  24. Luo, Z., & Pollack, R. (1992). LEGO Proof Development System: User’s Manual. LFCS Report ECS-LFCS-92-211, Department of Computer Science, University of Edinburgh.Google Scholar
  25. Luo, Z., Soloviev, S., & Xue, T. (2012). Coercive subtyping: theory and implementation. Information and Computation, 223, 18–42.CrossRefGoogle Scholar
  26. Martin-Löf, P. (1975). An intuitionistic theory of types: predicative part. In H. Rose & J. C. Shepherdson (Eds), Logic Colloquium’73.Google Scholar
  27. Martin-Löf, P. (1984). Intuitionistic type theory. Berkeley: Bibliopolis.Google Scholar
  28. Montague, R. (1974). Formal philosophy: Selected papers of Richard Montague. New Haven: Yale University Press.Google Scholar
  29. Muskens, R. (1996). Combining Montague semantics and discourse representation. Linguistics and Philosophy, 19(2), 143–186.CrossRefGoogle Scholar
  30. Nordström, B., Petersson, K., & Smith, J. (1990). Programming in Martin-Löf’s type theory: An introduction. Oxford: Oxford University Press.Google Scholar
  31. Pierce, B. (1991). Programming with intersection types, union types, and polymorphism. Technical report CMU-CS-91-106, School of Computer Science, CMU.Google Scholar
  32. Ramsey, F. (1925). The foundations of mathematics. Proceedings of the London Mathematical Society, 25, 338–384.Google Scholar
  33. Ranta, A. (1994). Type-theoretical grammar. Oxford: Oxford University Press.Google Scholar
  34. Retoré, C. (2013). The Montagovian generative lexicon \(\lambda \) Ty \(_n\): A type theoretical framework for natural language semantics. In R. Matthes & A. Schubert (Eds), Proceedings of TYPES2013.Google Scholar
  35. Russell, B. (1992). The principles of mathematics. Routledge, 1903. Paperback edition.Google Scholar
  36. Sundholm, G. (1986). Proof theory and meaning. In D. Gabbay & F. Guenthner (Eds.), Handbook of Philosophical Logic (Vol. III).Google Scholar
  37. Sundholm, G. (1989). Constructive generalized quantifiers. Synthese, 79(1), 1–12.CrossRefGoogle Scholar
  38. Tasistro, A. (1997). Substitution, record types and subtyping in type theory. Ph.D thesis, Chalmers University of Technology.Google Scholar
  39.  White, A., & Russell, B. (1925). Principia Mathematica (2nd Edn). Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of GothenburgGöteborgSweden
  2. 2.Open University of CyprusLatsiaCyprus
  3. 3.Royal HollowayUniversity of LondonEgham, SurreyUK

Personalised recommendations