Strain Development by Whole-Cell Directed Evolution

  • Tong Si
  • Jiazhang Lian
  • Huimin ZhaoEmail author


Due to limited knowledge of complicated cellular networks, directed evolution has played critical roles in strain improvement, especially for complex traits with hundreds of genetic determinants and for organisms with few genetic tools. Directed evolution mimics natural evolution in the laboratory via iterative cycles of diversity generation and functional selection or screening to isolate evolved mutants with desirable phenotypes. In this chapter, we summarize recent technological advances and applications of directed evolution in strain development, focusing on the efforts for accelerating evolution workflows, expanding the range of target phenotypes, and facilitating mechanistic understanding of evolved mutations.


Directed Evolution Xylose Isomerase Genome Shuffling Xylose Utilization Acetic Acid Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbott DA, Zelle RM, Pronk JT, Maris AJA (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9(8):1123–1136PubMedCrossRefGoogle Scholar
  2. 2.
    Alexeyev MF, Shokolenko IN (1995) Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of gram-negative bacteria. Gene 160(1):59–62PubMedCrossRefGoogle Scholar
  3. 3.
    Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110(10):2616–2623PubMedCrossRefGoogle Scholar
  4. 4.
    Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568PubMedCrossRefGoogle Scholar
  5. 5.
    Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267PubMedCrossRefGoogle Scholar
  6. 6.
    Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74(24):7802–7808PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675PubMedCrossRefGoogle Scholar
  9. 9.
    Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52(1):109–121PubMedCrossRefGoogle Scholar
  10. 10.
    Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H (2015) Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4(5):585–594PubMedCrossRefGoogle Scholar
  11. 11.
    Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461(7268):1243–1247PubMedCrossRefGoogle Scholar
  12. 12.
    Biot-Pelletier D, Martin VJ (2014) Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol 98(9):3877–3887PubMedCrossRefGoogle Scholar
  13. 13.
    Blank D, Wolf L, Ackermann M, Silander OK (2014) The predictability of molecular evolution during functional innovation. Proc Natl Acad Sci U S A 111(8):3044–3049PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Brennan TC, Williams TC, Schulz BL, Palfreyman RW, Kromer JO, Nielsen LK (2015) Evolutionary engineering improves tolerance for replacement jet fuels in Saccharomyces cerevisiae. Appl Environ Microbiol 81(10):3316–3325PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657PubMedCrossRefGoogle Scholar
  16. 16.
    Cadiere A, Aguera E, Caille S, Ortiz-Julien A, Dequin S (2012) Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution. Food Microbiol 32(2):332–337PubMedCrossRefGoogle Scholar
  17. 17.
    Cadiere A, Ortiz-Julien A, Camarasa C, Dequin S (2011) Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab Eng 13(3):263–271PubMedCrossRefGoogle Scholar
  18. 18.
    Cakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12(2):171–182PubMedCrossRefGoogle Scholar
  19. 19.
    Carr PA, Church GM (2009) Genome engineering. Nat Biotechnol 27(12):1151–1162PubMedCrossRefGoogle Scholar
  20. 20.
    Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallstrom BM, Petranovic D, Nielsen J (2014) Altered sterol composition renders yeast thermotolerant. Science 346(6205):75–78PubMedCrossRefGoogle Scholar
  21. 21.
    Caspeta L, Nielsen J (2015) Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses. MBio 6(4):e00431PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N (2016) Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol Biofuels 9:9PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chou HH, Keasling JD (2013) Programming adaptive control to evolve increased metabolite production. Nat Commun 4:2595PubMedCrossRefGoogle Scholar
  24. 24.
    Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728PubMedCrossRefGoogle Scholar
  25. 25.
    Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dean AM, Thornton JW (2007) Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet 8(9):675–688PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Demeke MM, Foulquie-Moreno MR, Dumortier F, Thevelein JM (2015) Rapid evolution of recombinant Saccharomyces cerevisiae for Xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet 11(3):e1005010PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    DiCarlo JE, Conley AJ, Penttila M, Jantti J, Wang HH, Church GM (2013) Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol 2(12):741–749PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dietrich JA, McKee AE, Keasling JD (2010) High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 79:563–590PubMedCrossRefGoogle Scholar
  30. 30.
    Dietrich JA, Shis DL, Alikhani A, Keasling JD (2013) Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol 2(1):47–58PubMedCrossRefGoogle Scholar
  31. 31.
    Dörr M, Fibinger MPC, Last D, Schmidt S, Santos-Aberturas J, Böttcher D, Hummel A, Vickers C, Voss M, Bornscheuer UT (2016) Fully automatized high-throughput enzyme library screening using a robotic platform. Biotechnol Bioeng. doi: 10.1002/bit.25925 PubMedGoogle Scholar
  32. 32.
    Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution – principles and applications for biotechnology. Microb Cell Fact 12:64PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom DL, Boeke AC, Gottschling DE, Chandrasegaran S, Bader JS, Boeke JD (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477(7365):471–476PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ellis HM, Yu D, Di Tizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98(12):6742–6746PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Enquist-Newman M, Faust AM, Bravo DD, Santos CN, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505(7482):239–243PubMedCrossRefGoogle Scholar
  36. 36.
    Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Flikweert MT, Swaaf M, Dijken JP, Pronk JT (1999) Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae. FEMS Microbiol Lett 174(1):73–79PubMedCrossRefGoogle Scholar
  38. 38.
    Fondi M, Liò P (2015) Multi-omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res 171:52–64PubMedCrossRefGoogle Scholar
  39. 39.
    Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648PubMedCrossRefGoogle Scholar
  40. 40.
    Fullwood MJ, Wei CL, Liu ET, Ruan Y (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19(4):521–532PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Geertman JM, Maris AJ, Dijken JP, Pronk JT (2006) Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Metab Eng 8(6):532–542PubMedCrossRefGoogle Scholar
  42. 42.
    Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian K-D, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang C-Y, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391PubMedCrossRefGoogle Scholar
  43. 43.
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Greener A, Callahan M, Jerpseth B (1997) An efficient random mutagenesis technique using an E. coli mutator strain. Mol Biotechnol 7(2):189–195PubMedCrossRefGoogle Scholar
  45. 45.
    Gresham D, Dunham MJ (2014) The enduring utility of continuous culturing in experimental evolution. Genomics 104(6 Pt A):399–405PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Guadalupe-Medina V, Metz B, Oud B, Graaf CM, Mans R, Pronk JT, Maris AJ (2014) Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. J Microbial Biotechnol 7(1):44–53CrossRefGoogle Scholar
  47. 47.
    Guimaraes PM, Berre V, Sokol S, Francois J, Teixeira JA, Domingues L (2008) Comparative transcriptome analysis between original and evolved recombinant lactose-consuming Saccharomyces cerevisiae strains. Biotechnol J 3(12):1591–1597PubMedCrossRefGoogle Scholar
  48. 48.
    Hasunuma T, Sakamoto T, Kondo A (2016) Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids. Appl Microbiol Biotechnol 100(2):1027–1038PubMedCrossRefGoogle Scholar
  49. 49.
    Hawkins GM, Doran-Peterson J (2011) A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol Biofuels 4(1):49PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ho CH, Magtanong L, Barker SL, Gresham D, Nishimura S, Natarajan P, Koh JL, Porter J, Gray CA, Andersen RJ, Giaever G, Nislow C, Andrews B, Botstein D, Graham TR, Yoshida M, Boone C (2009) A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol 27(4):369–377PubMedCrossRefGoogle Scholar
  51. 51.
    Hong KK, Nielsen J (2013) Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose. Metab Eng 16:78–86PubMedCrossRefGoogle Scholar
  52. 52.
    Horinouchi T, Minamoto T, Suzuki S, Shimizu H, Furusawa C (2014) Development of an automated culture system for laboratory evolution. J Lab Autom 19(5):478–482PubMedCrossRefGoogle Scholar
  53. 53.
    Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27(5):462–464PubMedCrossRefGoogle Scholar
  54. 54.
    Huang M, Bai Y, Sjostrom SL, Hallstrom BM, Liu Z, Petranovic D, Uhlen M, Joensson HN, Andersson-Svahn H, Nielsen J (2015) Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc Natl Acad Sci U S A 112(34):E4689–E4696PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286(5447):2165–2169PubMedCrossRefGoogle Scholar
  56. 56.
    Jakiela S, Kaminski TS, Cybulski O, Weibel DB, Garstecki P (2013) Bacterial growth and adaptation in microdroplet chemostats. Angew Chem Int Ed 52(34):8908–8911CrossRefGoogle Scholar
  57. 57.
    Jakociunas T, Bonde I, Herrgard M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222PubMedCrossRefGoogle Scholar
  58. 58.
    Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358PubMedCrossRefGoogle Scholar
  60. 60.
    Kim HJ, Ha S, Lee HY, Lee KJ (2015) ROSics: chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrum Rev 34(2):184–208CrossRefGoogle Scholar
  61. 61.
    Kim SJ, Seo SO, Jin YS, Seo JH (2013) Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274–281PubMedCrossRefGoogle Scholar
  62. 62.
    Kim SJ, Seo SO, Park YC, Jin YS, Seo JH (2014) Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. J Biotechnol 192:376–382PubMedCrossRefGoogle Scholar
  63. 63.
    Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS (2013) Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 8(2):e57048PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kim SR, Xu H, Lesmana A, Kuzmanovic U, Au M, Florencia C, Oh EJ, Zhang G, Kim KH, Jin YS (2015) Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 81(5):1601–1609PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kinnersley M, Wenger J, Kroll E, Adams J, Sherlock G, Rosenzweig F (2014) Ex uno plures: clonal reinforcement drives evolution of a simple microbial community. PLoS Genet 10(6):e1004430PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Klein-Marcuschamer D, Stephanopoulos G (2008) Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci U S A 105(7):2319–2324PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Klimacek M, Kirl E, Krahulec S, Longus K, Novy V, Nidetzky B (2014) Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae. Microb Cell Fact 13(1):37PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Koffas M (2005) Evolutionary metabolic engineering. Metab Eng 7(1):1–3CrossRefGoogle Scholar
  69. 69.
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588PubMedCrossRefGoogle Scholar
  70. 70.
    Koppram R, Albers E, Olsson L (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 5(1):32PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120PubMedCrossRefGoogle Scholar
  72. 72.
    Kryazhimskiy S, Rice DP, Jerison ER, Desai MM (2014) Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344(6191):1519–1522PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kucukgoze G, Alkim C, Yilmaz U, Kisakesen HI, Gunduz S, Akman S, Cakar ZP (2013) Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae. FEMS Yeast Res 13(8):731–746PubMedCrossRefGoogle Scholar
  74. 74.
    Lang GI, Botstein D, Desai MM (2011) Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 188(3):647–661PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lang GI, Desai MM (2014) The spectrum of adaptive mutations in experimental evolution. Genomics 104(6):412–416PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lang GI, Murray AW (2008) Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178(1):67–82PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, Desai MM (2013) Pervasive genetic hitchhiking and clonal interference in fourty evolving yeast populations. Nature 500(7464):571–574PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lee H, Popodi E, Tang H, Foster PL (2012) Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci U S A 109(41):E2774–E2783PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lee HJ, Kim SJ, Yoon JJ, Kim KH, Seo JH, Park YC (2015) Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol. Bioresour Technol 191:445–451PubMedCrossRefGoogle Scholar
  80. 80.
    Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8(6):536–546PubMedCrossRefGoogle Scholar
  81. 81.
    Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108(3):621–631PubMedCrossRefGoogle Scholar
  82. 82.
    Lee SM, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7(1):122PubMedPubMedCentralGoogle Scholar
  83. 83.
    Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33(10):1061–1072PubMedCrossRefGoogle Scholar
  84. 84.
    Lenski RE, Mongold JA, Sniegowski PD, Travisano M, Vasi F, Gerrish PJ, Schmidt TM (1998) Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? Antonie Van Leeuwenhoek 73(1):35–47PubMedCrossRefGoogle Scholar
  85. 85.
    Li P, Sun H, Chen Z, Li Y, Zhu T (2015) Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production. Microb Cell Fact 14:22PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Li S, Si T, Wang M, Zhao H (2015) Development of a synthetic Malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening. ACS Synth Biol 4(12):1308–1315PubMedCrossRefGoogle Scholar
  87. 87.
    Lian J, Chao R, Zhao H (2014) Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng 23:92–99PubMedCrossRefGoogle Scholar
  88. 88.
    Lind PA, Andersson DI (2008) Whole-genome mutational biases in bacteria. Proc Natl Acad Sci U S A 105(46):17878–17883PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ling H, Pratomo Juwono NK, Teo WS, Liu R, Leong SS, Chang MW (2015) Engineering transcription factors to improve tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels 8:231PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lopez-Malo M, Garcia-Rios E, Melgar B, Sanchez MR, Dunham MJ, Guillamon JM (2015) Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genomics 16:537PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH, Sawyer SL (2013) High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc Natl Acad Sci U S A 110(49):19872–19877PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Luan G, Cai Z, Li Y, Ma Y (2013) Genome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production. Biotechnol Biofuels 6(1):137PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, Dickinson WJ, Okamoto K, Kulkarni S, Hartl DL, Thomas WK (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A 105(27):9272–9277PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lynch MD, Warnecke T, Gill RT (2007) SCALEs: multiscale analysis of library enrichment. Nat Methods 4(1):87–93PubMedCrossRefGoogle Scholar
  95. 95.
    Maharjan R, Seeto S, Notley-McRobb L, Ferenci T (2006) Clonal adaptive radiation in a constant environment. Science 313(5786):514–517PubMedCrossRefGoogle Scholar
  96. 96.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Martinez JL, Bordel S, Hong KK, Nielsen J (2014) Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect in Saccharomyces cerevisiae and explaining evolutionary trade-offs of adaptation to galactose through systems biology. FEMS Yeast Res 14(4):654–662PubMedCrossRefGoogle Scholar
  98. 98.
    Michener JK, Smolke CD (2012) High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng 14(4):306–316PubMedCrossRefGoogle Scholar
  99. 99.
    Mitsumasu K, Liu ZS, Tang YQ, Akamatsu T, Taguchi H, Kida K (2014) Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating. J Biosci Bioeng 118(6):689–695PubMedCrossRefGoogle Scholar
  100. 100.
    Mukherjee K, Bhattacharyya S, Peralta-Yahya P (2015) GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synth Biol 4(12):1261–1269PubMedCrossRefGoogle Scholar
  101. 101.
    Nan H, Seo SO, Oh EJ, Seo JH, Cate JH, Jin YS (2014) 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98(12):5757–5764PubMedCrossRefGoogle Scholar
  102. 102.
    Nielsen J, Keasling Jay D (2016) Engineering cellular metabolism. Cell 164(6):1185–1197PubMedCrossRefGoogle Scholar
  103. 103.
    Nijland JG, Shin HY, Jong RM, Waal PP, Klaassen P, Driessen AJ (2014) Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 7(1):168PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Notley-McRobb L, King T, Ferenci T (2002) rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184(3):806–811PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Novick A, Szilard L (1950) Description of the chemostat. Science 112(2920):715–716PubMedCrossRefGoogle Scholar
  106. 106.
    Ochi K (2007) From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem 71(6):1373–1386PubMedCrossRefGoogle Scholar
  107. 107.
    Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, Maris AJ (2012) An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 11:131PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Oud B, Maris AJ, Daran JM, Pronk JT (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12(2):183–196PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Park K-S, Lee D-K, Lee H, Lee Y, Jang Y-S, Kim YH, Yang H-Y, Lee S-I, Seol W, Kim J-S (2003) Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol 21(10):1208–1214PubMedCrossRefGoogle Scholar
  110. 110.
    Park KS, Jang YS, Lee H, Kim JS (2005) Phenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells. J Bacteriol 187(15):5496–5499PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Patzschke A, Steiger MG, Holz C, Lang C, Mattanovich D, Sauer M (2015) Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains. Biotechnol J 10(11):1719–1726PubMedCrossRefGoogle Scholar
  112. 112.
    Pereira SR, Sanchez INV, Frazao CJ, Serafim LS, Gorwa-Grauslund MF, Xavier AM (2015) Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering. Biotechnol Biofuels 8:50PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Pinel D, Colatriano D, Jiang H, Lee H, Martin VJ (2015) Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast. Biotechnol Biofuels 8:53PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Pinel D, D’Aoust F, Cardayre SB, Bajwa PK, Lee H, Martin VJ (2011) Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Environ Microbiol 77(14):4736–4743PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Qi X, Zha J, Liu GG, Zhang W, Li BZ, Yuan YJ (2015) Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Front Microbiol 6:1165PubMedPubMedCentralGoogle Scholar
  116. 116.
    Quandt EM, Deatherage DE, Ellington AD, Georgiou G, Barrick JE (2014) Recursive genome-wide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli. Proc Natl Acad Sci U S A 111(6):2217–2222PubMedCrossRefGoogle Scholar
  117. 117.
    Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S (2013) Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 113(7):4611–4632PubMedCrossRefGoogle Scholar
  118. 118.
    Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21:26–33PubMedCrossRefGoogle Scholar
  119. 119.
    Rodriguez-Verdugo A, Carrillo-Cisneros D, Gonzalez-Gonzalez A, Gaut BS, Bennett AF (2014) Different tradeoffs result from alternate genetic adaptations to a common environment. Proc Natl Acad Sci U S A 111(33):12121–12126PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rosenzweig F, Sherlock G (2014) Experimental evolution: prospects and challenges. Genomics 104(6, Part A):v–viPubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Sanchez BJ, Nielsen J (2015) Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr Biol 7(8):846–858CrossRefGoogle Scholar
  122. 122.
    Santos CNS, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12(2):168–176PubMedCrossRefGoogle Scholar
  123. 123.
    Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169PubMedGoogle Scholar
  124. 124.
    Scalcinati G, Otero JM, Vleet JR, Jeffries TW, Olsson L, Nielsen J (2012) Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res 12(5):582–597PubMedCrossRefGoogle Scholar
  125. 125.
    Serero A, Jubin C, Loeillet S, Legoix-Ne P, Nicolas AG (2014) Mutational landscape of yeast mutator strains. Proc Natl Acad Sci U S A 111(5):1897–1902PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87PubMedCrossRefGoogle Scholar
  127. 127.
    Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4(2):206–223PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Shen Y, Stracquadanio G, Wang Y, Yang K, Mitchell LA, Xue Y, Cai Y, Chen T, Dymond JS, Kang K, Gong J, Zeng X, Zhang Y, Li Y, Feng Q, Xu X, Wang J, Wang J, Yang H, Boeke JD, Bader JS (2016) SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res 26(1):36–49PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Shi S, Liang Y, Zhang MM, Ang EL, Zhao H (2016) A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng 33:19–27PubMedCrossRefGoogle Scholar
  130. 130.
    Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178(24):7276–7284PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Shin HY, Nijland JG, Waal PP, Jong RM, Klaassen P, Driessen AJ (2015) An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 8:176PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Shui W, Xiong Y, Xiao W, Qi X, Zhang Y, Lin Y, Guo Y, Zhang Z, Wang Q, Ma Y (2015) Understanding the mechanism of thermotolerance distinct from heat shock response through proteomic analysis of industrial strains of Saccharomyces cerevisiae. Mol Cell Proteomics 14(7):1885–1897PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Si T, Luo Y, Bao Z, Zhao H (2015) RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering. ACS Synth Biol 4(3):283–291PubMedCrossRefGoogle Scholar
  134. 134.
    Si T, Xiao H, Zhao H (2015) Rapid prototyping of microbial cell factories via genome-scale engineering. Biotechnol Adv 33(7):1420–1432PubMedCrossRefGoogle Scholar
  135. 135.
    Sjostrom SL, Bai Y, Huang M, Liu Z, Nielsen J, Joensson HN, Andersson Svahn H (2014) High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab Chip 14(4):806–813PubMedCrossRefGoogle Scholar
  136. 136.
    Skretas G, Kolisis FN (2012) Combinatorial approaches for inverse metabolic engineering applications. Comput Struct Biotechnol J 3:e201210021PubMedCrossRefGoogle Scholar
  137. 137.
    Smith KM, Liao JC (2011) An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab Eng 13(6):674–681PubMedCrossRefGoogle Scholar
  138. 138.
    Snoek T, Picca Nicolino M, Bremt S, Mertens S, Saels V, Verplaetse A, Steensels J, Verstrepen KJ (2015) Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. Biotechnol Biofuels 8:32PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69(4):1990–1998PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Standage-Beier K, Zhang Q, Wang X (2015) Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synth Biol 4(11):1217–1225PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Steensels J, Snoek T, Meersman E, Picca Nicolino M, Voordeckers K, Verstrepen KJ (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38(5):947–995PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Stovicek V, Borodina I, Forster J (2015) CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2:13–22CrossRefGoogle Scholar
  143. 143.
    Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M (2012) Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci U S A 109(45):18488–18492PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS (2012) The molecular diversity of adaptive convergence. Science 335(6067):457–461PubMedCrossRefGoogle Scholar
  145. 145.
    Teoh ST, Putri S, Mukai Y, Bamba T, Fukusaki E (2015) A metabolomics-based strategy for identification of gene targets for phenotype improvement and its application to 1-butanol tolerance in Saccharomyces cerevisiae. Biotechnol Biofuels 8:144PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Tilloy V, Cadiere A, Ehsani M, Dequin S (2015) Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. Int J Food Microbiol 213:49–58PubMedCrossRefGoogle Scholar
  147. 147.
    Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (2012) Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44(1):101–105CrossRefGoogle Scholar
  148. 148.
    Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, Gygi SP, Dunham MJ, Amon A (2010) Identification of aneuploidy-tolerating mutations. Cell 143(1):71–83PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Maris AJ, Geertman JM, Vermeulen A, Groothuizen MK, Winkler AA, Piper MD, Dijken JP, Pronk JT (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70(1):159–166PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Vanee N, Fisher AB, Fong SS (2012) Evolutionary engineering for industrial microbiology. Subcell Biochem 64:43–71PubMedCrossRefGoogle Scholar
  151. 151.
    Vilela Lde F, de Araujo VP, Paredes Rde S, Bon EP, Torres FA, Neves BC, Eleutherio EC (2015) Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express 5:16PubMedCrossRefGoogle Scholar
  152. 152.
    Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–U133PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Wang M, Li S, Zhao H (2016) Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. Biotechnol Bioeng 113(1):206–215PubMedCrossRefGoogle Scholar
  154. 154.
    Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84PubMedCrossRefGoogle Scholar
  155. 155.
    Wang Y, Zhang S, Liu H, Zhang L, Yi C, Li H (2015) Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. J Basic Microbiol 55(12):1417–1426PubMedCrossRefGoogle Scholar
  156. 156.
    Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335(6066):308–313PubMedCrossRefGoogle Scholar
  157. 157.
    Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LB, Gill RT (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28(8):856–862PubMedCrossRefGoogle Scholar
  158. 158.
    Wei N, Quarterman J, Jin YS (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31(2):70–77PubMedCrossRefGoogle Scholar
  159. 159.
    Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104(6 Pt A):406–411PubMedCrossRefGoogle Scholar
  160. 160.
    Wisselink HW, Cipollina C, Oud B, Crimi B, Heijnen JJ, Pronk JT, Maris AJ (2010) Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 12(6):537–551PubMedCrossRefGoogle Scholar
  161. 161.
    Woodruff LBA, Gill RT (2011) Engineering genomes in multiplex. Curr Opin Biotechnol 22(4):576–583PubMedCrossRefGoogle Scholar
  162. 162.
    Wright J, Bellissimi E, Hulster E, Wagner A, Pronk JT, Maris AJ (2011) Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 11(3):299–306PubMedCrossRefGoogle Scholar
  163. 163.
    Xiao H, Zhao H (2014) Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae. Biotechnol Biofuels 7:78PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Xu H, Kim S, Sorek H, Lee Y, Jeong D, Kim J, Oh EJ, Yun EJ, Wemmer DE, Kim KH, Kim SR, Jin YS (2016) PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metab Eng 34:88–96PubMedCrossRefGoogle Scholar
  165. 165.
    Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J (2014) Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol 156:232–239PubMedCrossRefGoogle Scholar
  166. 166.
    Zelle RM, Hulster E, Winden WA, Waard P, Dijkema C, Winkler AA, Geertman JM, Dijken JP, Pronk JT, Maris AJ (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74(9):2766–2777PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Zha J, Shen M, Hu M, Song H, Yuan Y (2014) Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. J Ind Microbiol Biotechnol 41(1):27–39PubMedCrossRefGoogle Scholar
  168. 168.
    Zhang Y, Liu G, Engqvist MK, Krivoruchko A, Hallstrom BM, Chen Y, Siewers V, Nielsen J (2015) Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain. Microb Cell Fact 14:116PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14(6):611–622PubMedCrossRefGoogle Scholar
  170. 170.
    Zhu L, Li Y, Cai Z (2015) Development of a stress-induced mutagenesis module for autonomous adaptive evolution of Escherichia coli to improve its stress tolerance. Biotechnol Biofuels 8:93PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Ziv N, Brandt NJ, Gresham D (2013) The use of chemostats in microbial systems biology. J Vis Exp 80:18Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Departments of Chemistry, Biochemistry, and BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations