Recent Advances in Directed Phytase Evolution and Rational Phytase Engineering



Phytases are hydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Phytate is the major phosphorous storage compound in cereal gains, oilseeds, and legumes and is indigestible by monogastric animals such as poultry and swine. Supplementation of phytase in animal feed proved to improve animal nutrition and decrease phosphorous pollution. Several phytases were discovered in the last century, and today a highly competitive market situation emerged the demands for phytases that are redesigned to excellently match industrial demands. Phytase engineering by directed evolution and rational design has offered a robust approach to tailor-made phytases with high specific activity, broad thermal and pH profile, and protease resistance. In this chapter, we summarized challenges and successful approaches employed in phytase engineering. Factors influencing phytase thermostability, pH stability, pH optima, and protease resistance have been discussed with respect to structural perspective and potential molecular mechanism for improvement. Importance of cooperative substitutions and a way to identify these interactions are discussed. Recent development in screening technology and molecular insights in combining key beneficial substitutions are detailed. In addition, strategies and approaches for rapid and efficient evolution of phytases and to understand structure function relationships on a molecular level have been proposed.


Directed evolution Phytase Thermostability Protein engineering pH stability Industrial enzyme 


  1. 1.
    Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9(3):165–191CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Harland BF, Oberleas D (1999) Phytase in animal nutrition and waste management. BASF Ref Man 237–240.Google Scholar
  3. 3.
    Sebastian S, Touchburn SP, Chavez ER (1998) Implications of phytic acid and supplemental microbial phytase in poultry nutrition: a review. World Peoult Sci J 54(01):27–47CrossRefGoogle Scholar
  4. 4.
    Lei XG, Weaver JD, Mullaney E et al (2013) Phytase, a new life for an “old” enzyme. Ann Rev Anim Biosci 1:283–309CrossRefGoogle Scholar
  5. 5.
    Lei XG, Ku PK, Miller ER et al (1993) Supplementing corn-soybean meal diets with microbial phytase maximizes phytate phosphorus utilization by weanling pigs. J Anim Sci 71(12):3368–3375PubMedGoogle Scholar
  6. 6.
    Lei XG, Ku PK, Miller ER et al (1994) Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J Anim Sci 72(1):139–143PubMedGoogle Scholar
  7. 7.
    Lei X, Ku PK, Miller ER et al (1993) Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J Nutr 123(6):1117–1123PubMedGoogle Scholar
  8. 8.
    Gilbert N (2009) Environment: the disappearing nutrient. Nature 461(7265):716–718CrossRefPubMedGoogle Scholar
  9. 9.
    Adeola O, Cowieson AJ (2011) BOARD-INVITED REVIEW: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J Anim Sci 89(10):3189–3218CrossRefPubMedGoogle Scholar
  10. 10.
    Cowieson A, Cooper R (2010) Introduction to the event and overview of the phytase market. In: International phytase summit. International Phytase Summit, Washington, DCGoogle Scholar
  11. 11.
    Meyer AS (2010) Enzyme technology for precision functional food ingredient processes. Ann N Y Acad Sci 1190:126–132CrossRefPubMedGoogle Scholar
  12. 12.
    Hubenova Y, Georgiev D, Mitov M (2014) Stable current outputs and phytate degradation by yeast-based biofuel cell. Yeast 31(9):343–348CrossRefPubMedGoogle Scholar
  13. 13.
    Fujita J, Fukuda H, Yamane Y-I et al (2001) Critical importance of phytase for yeast growth and alcohol fermentation in Japanese sake brewing. Biotechnol Lett 23(11):867–871CrossRefGoogle Scholar
  14. 14.
    Billington DC (1993) In: Billington DC (ed) The Inositols phosphates: chemical synthesis and biological significance. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  15. 15.
    Fu S, Sun J, Qian L et al (2008) Bacillus phytases: present scenario and future perspectives. Appl Biochem Biotechnol 151(1):1–8CrossRefPubMedGoogle Scholar
  16. 16.
    Kim MS, Weaver JD, Lei XG (2008) Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase. Appl Microbiol Biotechnol 79(5):751–758CrossRefPubMedGoogle Scholar
  17. 17.
    Kim MS, Lei XG (2008) Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol 79(1):69–75CrossRefPubMedGoogle Scholar
  18. 18.
    Shivange AV, Roccatano D, Schwaneberg U (2016) Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Appl Microbiol Biotechnol 100(1):227–242CrossRefPubMedGoogle Scholar
  19. 19.
    Wong TS, Roccatano D, Zacharias M et al (2006) A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol 355(4):858–871CrossRefPubMedGoogle Scholar
  20. 20.
    Di Giulio M (2005) The origin of the genetic code: theories and their relationships, a review. Biosystems 80(2):175–184CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao J, Kardashliev T, Joelle Ruff A et al (2014) Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations. Biotechnol Bioeng 111(12):2380–2389CrossRefPubMedGoogle Scholar
  22. 22.
    Shivange AV, Serwe A, Dennig A et al (2012) Directed evolution of a highly active Yersinia mollaretii phytase. Appl Microbiol Biotechnol 95(2):405–418CrossRefPubMedGoogle Scholar
  23. 23.
    Singh B, Satyanarayana T (2009) Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour Technol 100(6):2046–2051CrossRefPubMedGoogle Scholar
  24. 24.
    Lehmann M, Kostrewa D, Wyss M et al (2000) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng 13(1):49–57CrossRefPubMedGoogle Scholar
  25. 25.
    Shivange AV, Schwaneberg U, Roccatano D (2010) Conformational dynamics of active site loop in Escherichia coli phytase. Biopolymers 93(11):994–1002CrossRefPubMedGoogle Scholar
  26. 26.
    Shivange AV, Dennig A, Schwaneberg U (2014) Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. J Biotechnol 170:68–72CrossRefPubMedGoogle Scholar
  27. 27.
    Salverda ML, Dellus E, Gorter FA et al (2011) Initial mutations direct alternative pathways of protein evolution. PLoS Genet 7(3):e1001321CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen W, Ye L, Guo F et al (2015) Enhanced activity of an alkaline phytase from Bacillus subtilis 168 in acidic and neutral environments by directed evolution. Biochem Eng J 98:137–143CrossRefGoogle Scholar
  29. 29.
    Tracewell CA, Arnold FH (2009) Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol 13(1):3–9CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen C-C, Cheng K-J, Ko T-P et al (2015) Current progresses in phytase research: three-dimensional structure and protein engineering. Chem Biol Eng Rev 2(2):76–86Google Scholar
  31. 31.
    Yao MZ, Zhang YH, Lu WL et al (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112(1):1–14CrossRefPubMedGoogle Scholar
  32. 32.
    Liao Y, Zeng M, Wu ZF et al (2012) Improving phytase enzyme activity in a recombinant phyA mutant phytase from Aspergillus niger N25 by error-prone PCR. Appl Biochem Biotechnol 166(3):549–562CrossRefPubMedGoogle Scholar
  33. 33.
    Garrett JB, Kretz KA, O’Donoghue E et al (2004) Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl Environ Microbiol 70(5):3041–3046CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wu TH, Chen CC, Cheng YS et al (2014) Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. J Biotechnol 175:1–6CrossRefPubMedGoogle Scholar
  35. 35.
    Zhao Q, Liu H, Zhang Y (2010) Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J Biosci Bioeng 110(6):638–645CrossRefPubMedGoogle Scholar
  36. 36.
    Zhu W, Qiao D, Huang M et al (2010) Modifying thermostability of appA from Escherichia coli. Curr Microbiol 61(4):267–273CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang W, Mullaney EJ, Lei XG (2007) Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl Environ Microbiol 73(9):3069–3076CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Viader-Salvado JM, Gallegos-Lopez JA, Carreon-Trevino JG et al (2010) Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris. Appl Environ Microbiol 76(19):6423–6430CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fei B, Cao Y, Xu H et al (2013) AppA C-terminal plays an important role in its thermostability in Escherichia coli. Curr Microbiol 66(4):374–378CrossRefPubMedGoogle Scholar
  40. 40.
    Fei B, Xu H, Cao Y et al (2013) A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. J Ind Microbiol Biotechnol 40(5):457–464CrossRefPubMedGoogle Scholar
  41. 41.
    Fu D, Huang H, Meng K et al (2009) Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnol Bioeng 103(5):857–864CrossRefPubMedGoogle Scholar
  42. 42.
    Tran TT, Mamo G, Buxo L et al (2011) Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu. Enzym Microb Technol 49(2):177–182CrossRefGoogle Scholar
  43. 43.
    Rodriguez E, Wood ZA, Karplus PA et al (2000) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382(1):105–112CrossRefPubMedGoogle Scholar
  44. 44.
    Tung ET, Ma HW, Cheng C et al (2008) Stabilization of beta-propeller phytase by introducing Xaa-->Pro and Gly-->Ala substitutions at consensus positions. Protein Pept Lett 15(3):297–299CrossRefPubMedGoogle Scholar
  45. 45.
    Bei J, Chen Z, Fu J et al (2009) Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. J Biotechnol 139(2):186–193CrossRefPubMedGoogle Scholar
  46. 46.
    Xu W, Shao R, Wang Z et al (2015) Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis. Appl Biochem Biotechnol 175(6):3184–3194CrossRefPubMedGoogle Scholar
  47. 47.
    Vogt G, Argos P (1997) Protein thermal stability: hydrogen bonds or internal packing? Fold Des 2(4):S40–S46CrossRefPubMedGoogle Scholar
  48. 48.
    Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269(4):631–643CrossRefPubMedGoogle Scholar
  49. 49.
    Karshikoff A, Nilsson L, Ladenstein R (2015) Rigidity versus flexibility: the dilemma of understanding protein thermal stability. FEBS J 282(20):3899–3917CrossRefPubMedGoogle Scholar
  50. 50.
    Folch B, Dehouck Y, Rooman M (2010) Thermo- and mesostabilizing protein interactions identified by temperature-dependent statistical potentials. Biophys J 98(4):667–677CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Strickler SS, Gribenko AV, Gribenko AV et al (2006) Protein stability and surface electrostatics: a charged relationship. Biochemistry 45(9):2761–2766CrossRefPubMedGoogle Scholar
  52. 52.
    Shivange AV, Hoeffken W, Haefner S, Schwaneberg U (2016). Protein consensus based surface engineering (ProCoS): a computer-assisted method for directed protein evolution. Biotechniques 61(6):305–314Google Scholar
  53. 53.
    Svihus B (2014) Function of the digestive system. J Appl Poult Res 23(2):306–314CrossRefGoogle Scholar
  54. 54.
    Kim T, Mullaney EJ, Porres JM et al (2006) Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Appl Environ Microbiol 72(6):4397–4403CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Weaver JD, Mullaney EJ, Lei XG (2007) Altering the substrate specificity site of Aspergillus niger PhyB shifts the pH optimum to pH 3.2. Appl Microbiol Biotechnol 76(1):117–122CrossRefPubMedGoogle Scholar
  56. 56.
    Wyss M, Pasamontes L, Friedlein A et al (1999) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol 65(2):359–366PubMedPubMedCentralGoogle Scholar
  57. 57.
    Lassen SF, De Maria L, Friis EP et al. (2012) Hafnia phytase variants. (US20120225468) Novozymes A/SGoogle Scholar
  58. 58.
    Lei X (2003) Enzymes with improved phytase activity. (US6511699 B1) Cornell Research Foundation, IncGoogle Scholar
  59. 59.
    Haefner S, Welzel A, and Thummer R (2014) Synthetic phytase variants. (US20140044835) BASF SEGoogle Scholar
  60. 60.
    Huang H, Luo H, Wang Y et al (2008) A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Appl Microbiol Biotechnol 80(3):417–426CrossRefPubMedGoogle Scholar
  61. 61.
    Greiner R, Farouk AE (2007) Purification and characterization of a bacterial phytase whose properties make it exceptionally useful as a feed supplement. Protein J 26(7):467–474CrossRefPubMedGoogle Scholar
  62. 62.
    Niu C, Luo H, Shi P et al (2015) N-glycosylation improves the pepsin resistance of HAP phytases by enhancing the stability at acidic pH and reducing the pepsin accessibility to peptic cleavage sites. Appl Environ Microbiol 82:1004–1014CrossRefPubMedGoogle Scholar
  63. 63.
    Basu SS and Zhang S (2010) Engineering enzymatically susceptible proteins. (US20100273198 A1) Syngenta Participations AgGoogle Scholar
  64. 64.
    Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1):207–234CrossRefPubMedGoogle Scholar
  65. 65.
    Sajidan A, Farouk A, Greiner R et al (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65(1):110–118CrossRefPubMedGoogle Scholar
  66. 66.
    Senn AM, Wolosiuk RA (2005) A high-throughput screening for phosphatases using specific substrates. Anal Biochem 339(1):150–156CrossRefPubMedGoogle Scholar
  67. 67.
    Aharoni A, Thieme K, Chiu CP et al (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Methods 3(8):609–614CrossRefPubMedGoogle Scholar
  68. 68.
    Pitzler C, Wirtz G, Vojcic L et al (2014) A fluorescent hydrogel-based flow cytometry high-throughput screening platform for hydrolytic enzymes. Chem Biol 21(12):1733–1742CrossRefPubMedGoogle Scholar
  69. 69.
    Mitra N, Sinha S, Ramya TN et al (2006) N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 31(3):156–163CrossRefPubMedGoogle Scholar
  70. 70.
    Sola RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98(4):1223–1245CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Yao MZ, Wang X, Wang W et al (2013) Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol Lett 35(10):1669–1676CrossRefPubMedGoogle Scholar
  72. 72.
    Huang H, Luo H, Yang P et al (2006) A novel phytase with preferable characteristics from Yersinia intermedia. Biochem Biophys Res Commun 350(4):884–889CrossRefPubMedGoogle Scholar
  73. 73.
    Miksch G, Kleist S, Friehs K et al (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol 59(6):685–694CrossRefPubMedGoogle Scholar
  74. 74.
    Suzuki U, Yoshimura K, Takaishi M (1907) Über ein enzym ‘Phytase’ das anhydro-oxy-methylen diphosphorsaure’ spalter. Tokyo Imp Univ Coll Agric Bull 7:503–512Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachenGermany

Personalised recommendations