An In Vitro Human Skin Test for Assessing Adverse Immune Reactions and Sensitization Potential

  • Anne DickinsonEmail author
  • Xiao Nong Wang
  • Shaheda Ahmed


A human in vitro skin explant test was developed by Alcyomics for the prediction of adverse immune reactions and assessment of relative potency. The skin explant test has a unique readout of histological damage, which ranges in severity from grade 0 and I (negative reaction) to grades II, III and IV damage (positive reaction) in human full-thickness skin. The test has been assessed for predicting responses to sensitizers and non-sensitizers, originally tested in the mouse local lymph node assay (LLNA). Results compared with the LLNA gave 95% specificity, 95% sensitivity and 95% concordance with a correlation coefficient of 0.9. Similar specificity and sensitivity were achieved for comparison of results to published human data with a correlation coefficient of 0.91. The test can also identify chemicals mis-classified in the mouse local lymph node assay (LLNA). Results of the skin test correlate with high or low T cell proliferation and IFNγ production, and these assays can be used as in vitro screening tests for compounds. Collectively, the human in vitro skin explant test can provide a robust, reliable and novel approach for characterization of sensitizing activity as a first step in the risk assessment process.


Skin sensitization Local lymph node assay In vitro alternative to animal testing Potency T cell proliferation Interferon-γ Antigen-specific priming 


  1. 1.
    Vogelsang GB, Hess AD, Berkman AW, Tutschka PJ, Farmer ER, Converse PJ, Santos GW. An in vitro predictive test for graft versus host disease in patients with genotypic HLA-identical bone marrow transplants. N Engl J Med. 1985;313:645–50.CrossRefPubMedGoogle Scholar
  2. 2.
    Dickinson AM, Sviland L, Dunn J, Carey P, Proctor SJ. Demonstration of direct involvement of cytokines in graft-versus-host reactions using an in vitro human skin explant model. Bone Marrow Transplant. 1991;7:209–16.PubMedGoogle Scholar
  3. 3.
    Dickinson AM, Wang XN, Sviland L, Vyth-Dreese FA, Jackson GH, Schumacher TN, Haanen JB, Mutis T, Goulmy E. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat Med. 2002;8(4):410.CrossRefPubMedGoogle Scholar
  4. 4.
    Jarvis M, Schulz U, Dickinson AM, Sviland L, Jackson G, Konur A, Wang XN, Hromadnikova I, Kolb HJ, Eissner G, Holler E. The detection of apoptosis in a human in vitro skin explant assay for graft versus host reactions. J Clin Pathol. 2002;55:127–32.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ruffin N, Ahmed SS, Osorio LM, Wang XN, Jackson GH, Collin MP, Ekre HP, Chiodi F, Dickinson AM. The involvement of epithelial Fas in a human model of graft versus host disease. Transplantation. 2011;91:946–51.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang XN, Haniffa MA, Holtick U, Collin MP, Jackson G, Hilkens CM, Holler E, Edinger M, Hoffmann P, Dickinson AM. Regulatory T-cell suppression of CD8+ T-cell-mediated graft-versus-host reaction requires their presence during priming. Transplantation. 2009;88:188–97.CrossRefPubMedGoogle Scholar
  7. 7.
    Dickinson A, Hromadnikova I, Sviland L, Jackson G, Taylor P, Vavrinec J, Sedlacek P, Cermakova M, Stary J, Vitek A, Sajdova J, Proctor S. Use of a skin explant model for predicting GVHD in HLA-matched bone marrow transplants – effect of GVHD prophylaxis. Bone Marrow Transplant. 1999;24:857–63.CrossRefPubMedGoogle Scholar
  8. 8.
    Dickinson AM, Sviland L, Carey P, Reid MM, Hamilton PJ, Pearson AJ, Proctor SJ. Skin explant culture as a model for cutaneous graft-versus-host disease in humans. Bone Marrow Transplant. 1988;3:323–9.PubMedGoogle Scholar
  9. 9.
    Sviland L, Dickinson AM. A human skin explant model for predicting graft-versus-host disease following bone marrow transplantation. J Clin Pathol. 1999;52:910–3.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sviland L, Dickinson AM, Carey PJ, Pearson AD, Proctor SJ. An in vitro predictive test for clinical graft-versus-host disease in allogeneic bone marrow transplant recipients. Bone Marrow Transplant. 1990;5:105–9.PubMedGoogle Scholar
  11. 11.
    Lerner KG, Kao GF, Storb R, Buckner CD, Clift RA, Thomas ED. Histopathology of graft-vs.-host reaction (GvHR) in human recipients of marrow from HL-A-matched sibling donors. Transplant Proc. 1974;6:367–71.PubMedGoogle Scholar
  12. 12.
    Chaudhry Q, Piclin N, Cotterill J, Pintore M, Price NR, Chretien JR, Roncaglioni A. Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J. 2010;4(Suppl 1):S5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dimitrov SD, Low LK, Patlewicz GY, Kern PS, Dimitrova GD, Comber MH, Phillips RD, Niemela J, Bailey PT, Mekenyan OG. Skin sensitization: modeling based on skin metabolism simulation and formation of protein conjugates. Int J Toxicol. 2005;24:189–204.CrossRefPubMedGoogle Scholar
  14. 14.
    Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa M, Ito Y, Suzuki H, Toyoda H. Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro. 2006;20:767–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Faulkner L, Martinsson K, Santoyo-Castelazo A, Cederbrant K, Schuppe-Koistinen I, Powell H, Tugwood J, Naisbitt DJ, Park BK. The development of in vitro culture methods to characterize primary T-cell responses to drugs. Toxicol Sci. 2012;127:150–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Python F, Goebel C, Aeby P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol. 2007;220:113–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Azam P, Peiffer JL, Chamousset D, Tissier MH, Bonnet PA, Vian L, Fabre I, Ourlin JC. The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers. Toxicol Appl Pharmacol. 2006;212:14–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Christiansen J, Farm G, Eid-Forest R, Anderson C, Cederbrant K, Hultman P. Interferon-gamma secreted from peripheral blood mononuclear cells as a possible diagnostic marker for allergic contact dermatitis to gold. Contact Dermatitis. 2006;55:101–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Dhabhar FS, Satoskar AR, Bluethmann H, David JR, McEwen BS. Stress-induced enhancement of skin immune function: a role for gamma interferon. Proc Natl Acad Sci U S A. 2000;97:2846–51.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Miyazawa M, Ito Y, Yoshida Y, Sakaguchi H, Suzuki H. Phenotypic alterations and cytokine production in THP-1 cells in response to allergens. Toxicol In Vitro. 2007;21:428–37.CrossRefPubMedGoogle Scholar
  21. 21.
    Kimber I, Hilton J, Weisenberger C. The murine local lymph node assay for identification of contact allergens: a preliminary evaluation of in situ measurement of lymphocyte proliferation. Contact Dermatitis. 1989;21:215–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Zaghi D, Maibach HI. The local lymph node assay compared with the human maximization test as an indicator of allergic potency in humans using patch test clinic populations. Cutan Ocul Toxicol. 2009;28:61–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Ahmed SS, Wang XN, Fielding M, Kerry A, Dickinson II, Munuswamy R, Kimber I, Dickinson AM. An in vitro human skin test for assessing sensitization potential. J Appl Toxicol. 2016;36:669–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Kvistborg P, Boegh M, Pedersen AW, Claesson MH, Zocca MB. Fast generation of dendritic cells. Cell Immunol. 2009;260:56–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Kobayashi T, Ito T, Kawakamo H, Fuzishiro K, Hirano H, Okubo Y, Tsuboi R. Eighteen cases of wheat allergy and wheat-dependent exercise-induced urticarial/anaphylaxis sensitized by hydrolyzed wheat protein in soap. Int J Dermatol. 2015;54(8):302–5.CrossRefGoogle Scholar
  26. 26.
    Lauriere M, Pecquet C, Bouchez-Mahiout I, Snegaroff J, Bayrou O, Raison-Peyron N, Vigan M. Hydrolysed wheat proteins present in cosmetics can induce immediate hypersensitivities. Contact Dermatitis. 2006;54(5):283–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Dickinson A, Sviland L, Jackson G, Dunn J, Stephens S, Proctor SJ. Monoclonal anti TNFα suppresses graft versus host disease reactions in an in vitro skin explant model. Cytokine. 1994;6(2):141–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Qesari M, Richter A, OgonekJ, Mischak-Weissinger E, Wang XN, Dickinson AM. Cytomegalovirus-Specific T Cells Isolated by IFN-gamma Secretion Assay Do Not Induce Significant Graft-Versus-Host Reactions In Vitro. Transplantation. 2016;100:2352–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Ogese MO, Ahmed SS, Alferivic A, Betts CJ, Dickinson AM, Failkner L, French N, Gibson A, Hirschfield GM, Kammuller M, Meng X, Martin SF, Musette P, Norris A, Pirmohamed M, Park BK, Purcell AW, Spraggs CF, Whritenour J, Naisbitt D. New approaches to investigate drug-induced hypersensitivity. Chem Res Toxicol. 2017;30:239–59.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anne Dickinson
    • 1
    • 2
    Email author
  • Xiao Nong Wang
    • 2
  • Shaheda Ahmed
    • 1
    • 2
  1. 1.Alcyomics, Ltd.Newcastle-upon-TyneUK
  2. 2.Haematological SciencesInstitute of Cellular Medicine, Newcastle UniversityNewcastle-upon-TyneUK

Personalised recommendations