Advertisement

Human Peripheral Blood Monocyte Derived Dendritic Cells Assay for the Detection and Characterization of Sensitizers

  • Andreas Schepky
  • Hendrik Reuter
  • Jochen Kühnl
  • Pierre Aeby
Chapter

Abstract

The human peripheral blood monocyte derived dendritic cells (PBMDCs) assay is an optimized test protocol for the detection and characterization of the sensitizing properties of chemicals. Using primary cells of human origin as a test system, it delivers additional and/or confirmatory information relevant to the human in vivo situation when integrated in a test strategy. The reproducibility and predictivity of the PBMDC assay have been evaluated with multiple chemical test sets and during a ring study organized with five laboratories. Additionally, the PBMDC participated in a systematic and comparative evaluation of various in vitro test methods for skin sensitization safety assessment. The assay was shown to be robust and transferable and it delivered results that compared very well with corresponding human sensitization data of chemicals including pro-haptens. It should be regarded as a primary source of information concerning the DC activation properties of the tested molecule or as an addition and/or a confirmation to the results already obtained with a cell line based test system.

Keywords

Skin sensitization In vitro Dendritic cells Human 

Notes

Acknowledgements

We thank Silke Gerlach and Jochem Spieker for excellent technical assistance and valuable intellectual contributions in the course of assay development.

References

  1. 1.
    Aeby P, Ashikaga T, Bessou-Touya S, Schepky A, Gerberick F, Kern P, Marrec-Fairley M, Maxwell G, Ovigne JM, Sakaguchi H, Reisinger K, Tailhardat M, Martinozzi-Teissier S, Winkler P. Identifying and characterizing chemical skin sensitizers without animal testing: Colipa’s research and method development program. Toxicol In Vitro. 2010;24:1465–73. doi: 10.1016/j.tiv.2010.07.005.CrossRefPubMedGoogle Scholar
  2. 2.
    Basketter D, Casati S, Gerberick GF, Griem P, Philips B, Worth A. Skin sensitisation. Altern Lab Anim. 2005;33(Suppl 1):83–103.PubMedGoogle Scholar
  3. 3.
    Maxwell G, Aeby P, Ashikaga T, Bessou-Touya S, Diembeck W, Gerberick F, Kern P, Marrec-Fairley M, Ovigne JM, Sakaguchi H, Schroeder K, Tailhardat M, Teissier S, Winkler P. Skin sensitisation: the Colipa strategy for developing and evaluating non-animal test methods for risk assessment. ALTEX. 2011;28:50–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Smith C, Hotchkiss SA. Allergic contact dermatitis. London: Taylor & Francis; 2001.Google Scholar
  5. 5.
    OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins, OECD Publishing, Paris, 2014. doi: 10.1787/9789264221444-en.
  6. 6.
    Aiba S, Terunuma A, Manome H, Tagami H. Dendritic cells differently respond to haptens and irritants by their production of cytokines and expression of co-stimulatory molecules. Eur J Immunol. 1997;27:3031–8. doi: 10.1002/eji.1830271141.CrossRefPubMedGoogle Scholar
  7. 7.
    Aeby P, Wyss C, Beck H, Griem P, Scheffler H, Goebel C. Characterization of the sensitizing potential of chemicals by in vitro analysis of dendritic cell activation and skin penetration. J Invest Dermatol. 2004;122:1154–64. doi: 10.1111/j.0022-202X.2004.22402.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Degwert J, Steckel F, Hoppe U, Kligman LH. In vitro model for contact sensitization: I. Stimulatory capacities of human blood-derived dendritic cells and their phenotypical alterations in the presence of contact sensitizers. Toxicol In Vitro. 1997;11:613–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Hulette BA, Ryan CA, Gerberick GF. Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment. Toxicol Appl Pharmacol. 2002;182:226–33.CrossRefPubMedGoogle Scholar
  10. 10.
    Basketter D, Maxwell G. In vitro approaches to the identification and characterization of skin sensitizers. Cutan Ocul Toxicol. 2007;26:359–73. doi: 10.1080/15569520701622993.CrossRefPubMedGoogle Scholar
  11. 11.
    Santos dos GG, Reinders J, Ouwehand K, Rustemeyer T, Scheper RJ, Gibbs S. Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound. Toxicol Appl Pharmacol. 2009;236:372–82. doi: 10.1016/j.taap.2009.02.004.CrossRefGoogle Scholar
  12. 12.
    Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I, Lovell-Badge R, Masters JRW, Meredith J, Stacey GN, Thraves P, Vias M, Cancer Research UK. Guidelines for the use of cell lines in biomedical research. Br J Cancer. 2014;111(6):1021–46. doi: 10.1038/bjc.2014.166.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sakaguchi H, Ryan C, Ovigne JM, Schroeder KR, Ashikaga T. Predicting skin sensitization potential and inter-laboratory reproducibility of a human Cell Line Activation Test (h-CLAT) in the European Cosmetics Association (COLIPA) ring trials. Toxicol In Vitro. 2010;24:1810–20. doi: 10.1016/j.tiv.2010.05.012.CrossRefPubMedGoogle Scholar
  14. 14.
    Skazik-Voogt C, Kühler K, Ott H, Czaja K, Zwadlo-Klarwasser G, Merk HF, Amann PM, Baron JM. Myeloid human cell lines lack functional regulation of aryl hydrocarbon receptor-dependent phase I genes. ALTEX. 2016;33(1):37–46.CrossRefPubMedGoogle Scholar
  15. 15.
    Nelissen I, Selderslaghs I, Heuvel RVD, Witters H, Verheyen GR, Schoeters G. MUTZ-3-derived dendritic cells as an in vitro alternative model to CD34+ progenitor-derived dendritic cells for testing of chemical sensitizers. Toxicol In Vitro. 2009;23:1477–81. doi: 10.1016/j.tiv.2009.08.022.CrossRefPubMedGoogle Scholar
  16. 16.
    Python F, Goebel C, Aeby P. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde. Toxicol Appl Pharmacol. 2009;239:273–83. doi: 10.1016/j.taap.2009.06.003.CrossRefPubMedGoogle Scholar
  17. 17.
    Reuter H, Spieker J, Gerlach S, Engels U, Pape W, Kolbe L, Schmucker R, Wenck H, Diembeck W, Wittern KP, Reisinger K, Schepky AG. In vitro detection of contact allergens: development of an optimized protocol using human peripheral blood monocyte-derived dendritic cells. Toxicol In Vitro. 2011;25:315–23. doi: 10.1016/j.tiv.2010.09.016.CrossRefPubMedGoogle Scholar
  18. 18.
    Staquet MJ, Sportouch M, Jacquet C, Schmitt D, Guesnet J, Peguet-Navarro J. Moderate skin sensitizers can induce phenotypic changes on in vitro generated dendritic cells. Toxicol In Vitro. 2004;18:493–500. doi: 10.1016/j.tiv.2003.12.005.CrossRefPubMedGoogle Scholar
  19. 19.
    Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi JV. Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 1992;13:204–8. doi: 10.1002/cyto.990130216.CrossRefPubMedGoogle Scholar
  20. 20.
    Hackenberg U, Bartling H. Measurement & calculation in pharmacological laboratories with a special numbering system (WL24-system). Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1959;235:437–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Aeby P, Sieber T, Beck H, Gerberick GF, Goebel C. Skin sensitization to p-phenylenediamine: the diverging roles of oxidation and N-acetylation for dendritic cell activation and the immune response. J Invest Dermatol. 2009;129:99–109. doi: 10.1038/jid.2008.209.CrossRefPubMedGoogle Scholar
  22. 22.
    Karschuk N, Tepe Y, Gerlach S, Pape W, Wenck H, Schmucker R, Wittern K-P, Schepky A, Reuter H. A novel in vitro method for the detection and characterization of photosensitizers. PLoS One. 2010;5:e15221. doi: 10.1371/journal.pone.0015221.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Skazik C, Heise R, Ott H, Czaja K, Marquardt Y, Merk HF, Baron JM. Active transport of contact allergens in human monocyte-derived dendritic cells is mediated by multidrug resistance related proteins. Arch Biochem Biophys. 2011;508:212–6. doi: 10.1016/j.abb.2011.01.013.CrossRefPubMedGoogle Scholar
  24. 24.
    Reuter H, Gerlach S, Spieker J, Ryan C, Bauch C, Mangez C, Winkler P, Landsiedel R, Templier M, Mignot A, Gerberick F, Wenck H, Aeby P, Schepky A. Evaluation of an optimized protocol using human peripheral blood monocyte derived dendritic cells for the in vitro detection of senstizers: results of a ring study in five laboratories. Toxicol In Vitro. 2015;29:976–86. doi: 10.1016/j.tiv.2015.03.021.CrossRefPubMedGoogle Scholar
  25. 25.
    Reisinger K, Hoffmann S, Alépée N, Ashikaga T, Barroso J, Elcombe C, Gellatly N, Galbiati V, Gibbs S, Groux H, Hibatallah J, Keller D, Kern P, Klaric M, Kolle S, Kuehnl J, Lambrechts N, Lindstedt M, Millet M, Martinozzi-Teissier S, Natsch A, Petersohn D, Pike I, Sakaguchi H, Schepky A, Tailhardat M, Templier M, van Vliet E, Maxwell G. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol In Vitro. 2014;29:259–70. doi: 10.1016/j.tiv.2014.10.018.CrossRefGoogle Scholar
  26. 26.
    Lepoittevin J-P. Metabolism versus chemical transformation or pro-versus prehaptens? Contact Dermat. 2006;54:73–4. doi: 10.1111/j.0105-1873.2006.00795.x.CrossRefGoogle Scholar
  27. 27.
    Basketter DA, Alépée N, Ashikaga T, Barroso J, Gilmour N, Goebel C, Hibatallah J, Hoffmann S, Kern P, Martinozzi-Teissier S, Maxwell G, Reisinger K, Sakaguchi H, Schepky A, Tailhardat M, Templier M. Categorization of chemicals according to their relative human skin sensitizing potency. Dermatitis. 2014;25:11–21. doi: 10.1097/DER.0000000000000003.CrossRefPubMedGoogle Scholar
  28. 28.
    Barratt MD, Basketter DA. Possible origin of the skin sensitization potential of isoeugenol and related compounds. (I). Preliminary studies of potential reaction mechanisms. Contact Dermat. 1992;27:98–104.CrossRefGoogle Scholar
  29. 29.
    Python F, Goebel C, Aeby P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol. 2007;220:113–24. doi: 10.1016/j.taap.2006.12.026.CrossRefPubMedGoogle Scholar
  30. 30.
    Goebel C, Aeby P, Ade N, Alepee N, Aptula A, Araki D, Dufour E, Gilmour N, Hibatallah J, Keller D, Kern P, Kirst A, Marrec-Fairley M, Maxwell G, Rowland J, Safford B, Schellauf F, Schepky A, Seaman C, Teichert T, Tessier N, Teissier S, Weltzien HU, Winkler P, Scheel J. Guiding principles for the implementation of non-animal safety assessment approaches for cosmetics: skin sensitisation. Regul Toxicol Pharmacol. 2012;63:40–52. doi: 10.1016/j.yrtph.2012.02.007.CrossRefPubMedGoogle Scholar
  31. 31.
    Rovida C, Alépée N, Api AM, Basketter DA, Bois FY, Caloni F, Corsini E, Daneshian M, Eskes C, Ezendam J, Fuchs H, Hayden P, Hegele-Hartung C, Hoffmann S, Hubesch B, Jacobs MN, Jaworska J, Kleensang A, Kleinstreuer N, Lalko J, Landsiedel R, Lebreux F, Luechtefeld T, Locatelli M, Mehling A, Natsch A, Pitchford JW, Prater D, Prieto P, Schepky A, Schuurmann G, Smirnova L, Toole C, van Vliet E, Weisensee D, Hartung T. Integrated Testing Strategies (ITS) for safety assessment. ALTEX. 2014;32(1):25–40. doi: 10.14573/altex.1411011.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gerberick GF, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin JP. Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci. 2004;81:332–43. doi: 10.1093/toxsci/kfh213.CrossRefPubMedGoogle Scholar
  33. 33.
    Ade N, Martinozzi-Teissier S, Pallardy M, Rousset F. Activation of U937 cells by contact sensitizers: CD86 expression is independent of apoptosis. J Immunotoxicol. 2006;3:189–97. doi: 10.1080/15476910600978038.CrossRefPubMedGoogle Scholar
  34. 34.
    Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa M, Ito Y, Suzuki H, Toyoda H. Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro. 2006;20:767–73. doi: 10.1016/j.tiv.2005.10.012.CrossRefPubMedGoogle Scholar
  35. 35.
    Nilsson AM, Bergstrom MA, Luthman K, Nilsson JL, Karlberg AT. A conjugated diene identified as a prohapten: contact allergenic activity and chemical reactivity of proposed epoxide metabolites. Chem Res Toxicol. 2005;18:308–16. doi: 10.1021/tx049758c.CrossRefPubMedGoogle Scholar
  36. 36.
    Smith Pease CK, Basketter DA, Patlewicz GY. Contact allergy: the role of skin chemistry and metabolism. Clin Exp Dermatol. 2003;28:177–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Reutter K, Jager D, Degwert J, Hoppe U. In vitro model for contact sensitization: II. Induction of IL-1beta mRNA in human blood-derived dendritic cells by contact sensitizers. Toxicol In Vitro. 1997;11:619–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Enk AH, Katz SI. Early events in the induction phase of contact sensitivity. J Invest Dermatol. 1992;99:39S–41S.CrossRefPubMedGoogle Scholar
  39. 39.
    Kimber I, Pichowski JS, Betts CJ, Cumberbatch M, Basketter DA, Dearman RJ. Alternative approaches to the identification and characterization of chemical allergens. Toxicol In Vitro. 2001;15:307–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Tuschl H, Kovac R. Langerhans cells and immature dendritic cells as model systems for screening of skin sensitizers. Toxicol In Vitro. 2001;15:327–31.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreas Schepky
    • 1
  • Hendrik Reuter
    • 1
  • Jochen Kühnl
    • 1
  • Pierre Aeby
    • 2
  1. 1.Beiersdorf AGHamburgGermany
  2. 2.Independant ConsultantMarlySwitzerland

Personalised recommendations