Advertisement

The h-CLAT Method

  • Hitoshi Sakaguchi
  • Takao Ashikaga
Chapter

Abstract

The h-CLAT method, which was developed in Japan, is based on the augmentation of surface marker CD86 and/or CD54 expression in THP-1 cells. After 24 h treatment with a test chemical, the expression of CD86 and CD54 of THP-1 cells is analysed using flow cytometry. The main prerequisite for the method is the solubility of the test chemical in the culture medium. Many publications have shown the usefulness of the h-CLAT method for the prediction of the skin sensitization potential of targeted chemicals. Moreover, after formal validation of the h-CLAT method by EURL ECVAM, the OECD has recently adopted a new TG No. 442E for the h-CLAT method[1]. Because h-CLAT will not be sufficient as a stand-alone method to cover the endpoint of skin sensitization, data generated with the h-CLAT method should be considered in the context of integrated approaches. The test developers strongly believe that the h-CLAT method will play an important role in in vitro skin sensitization testing.

References

  1. 1.
    OECD. OECD Guideline for the testing of chemicals, for a new test guideline, Test No. 442E: in vitro skin sensitization: human Cell Line Activation Test (h-CLAT). 2016. http://www.oecd-ilibrary.org/environment/test-no-442e-in-vitro-skin-sensitisation_9789264264359-en;jsessionid=2711x8ivdmkft.x-oecd-live-03. Accessed 29July 2016.
  2. 2.
    Basketter DA, Casati S, Gerberick GF, Griem P, Philips B, Worth A. Skin sensitisation. Altern Lab Anim. 2005;33:83–103.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Hart DNJ. Dendritic cells: unique leukocyte population which control the primary immune response. Blood. 1997;90:3245–87.PubMedGoogle Scholar
  5. 5.
    Aiba S, Katz SI. Phenotypic and functional characteristics of in vivo-activated Langerhans cells. J Immunol. 1990;145:2791–6.PubMedGoogle Scholar
  6. 6.
    Ozawa H, Nakagawa S, Tagami H, Aiba S. Interleukin-1 beta and granulocyte macrophage colony-stimulating factor mediate Langerhans cell maturation differently. J Invest Dermatol. 1996;106:441–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Aiba S, Terunuma A, Manome H, Tagami H. Dendritic cells differently responded to haptens and irritants by their production of cytokines and expression of co-stimulatory molecules. Eur J Immunol. 1997;27:3031–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Rougier N, Redziniak G, Mougin D, Schmitt D, Vincent C. In vitro evaluation of the sensitizaiton potential of weak contact allergens using Langerhans-like dendritic cells and autologous T cells. Toxicology. 2000;145:73–82.CrossRefPubMedGoogle Scholar
  9. 9.
    Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980;26:171–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982;42:1530–6.PubMedGoogle Scholar
  11. 11.
    Ade N, Leon F, Pallardy M, Peiffer JL, Kerdine-Romer S, Tissier MH, Bonnet PA, Fabre I, Ourlin JC. HMOX1 and NQO1 genes are up-regulated in response to contact sensitizers in dendritic cells and THP-1 cell line: role of the Keap1/Nrf2 pathway. Toxicol Sci. 2009;107:451–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Ashikaga T, Hoya M, Itagaki H, Katumura Y, Aiba S. Evaluation of CD86 expression and MHC class II molecule internalization in THP-1 human monocyte cells as predictive endpoints for contact sensitizers. Toxicol In Vitro. 2002;16:711–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Tietze C, Blömeke B. Sensitization assays: monocyte-derived dendritic cells versus a monocytic cell line (THP-1). J Toxicol Environ Health A. 2008;71:965–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Yoshida Y, Sakaguchi H, Ito Y, Okuda M, Suzuki H. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naïve THP-1 cell line. Toxicol In Vitro. 2003;17:221–2.CrossRefPubMedGoogle Scholar
  15. 15.
    Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa M, Ito Y, Suzuki H, Toyoda H. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro. 2006;20:767–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Mitjans M, Viviani B, Lucchi L, Galli CL, Marinovich M, Corsini E. Role of p38 MAPK in the selective release of IL-8 induced by chemical allergen in naive THp-1 cells. Toxicol In Vitro. 2008;22:386–95.CrossRefPubMedGoogle Scholar
  17. 17.
    Sakaguchi H, Ashikaga T, Miyazawa M, Yoshida Y, Ito Y, Yoneyama K, Hirota M, Itagaki H, Toyoda H, Suzuki H. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT. Toxicol In Vitro. 2006;20:774–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Miyazawa M, Ito Y, Yoshida Y, Sakaguchi H, Suzuki H. Phenotypic alterations and cytokine production inTHP-1 cells in response to allergens. Toxicol In Vitro. 2007;21:428–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Ashikaga T, Sakaguchi H, Sono S, Kosaka N, Ishikawa M, Nukada Y, Miyazawa M, Ito Y, Nishiyama N, Itagaki H. A comparative evaluation of in vitro skin sensitisation tests: the human cell-lineactivation test (h-CLAT) versus the local lymph node assay (LLNA). Altern Lab Anim. 2010;38:275–84.PubMedGoogle Scholar
  20. 20.
    Ashikaga T, Sakaguchi H, Okamoto K, Mizuno M, Sato J, Yamada T, Yoshida M, Ota N, Hasegawa S, Kodama T, Okamoto Y, Kuwahara H, Kosaka N, Sono S, Ohno Y. Assessment of the human Cell Line Activation Test (h-CLAT) for skin sensitization; results of the first Japanese inter-laboratory study. Altern Anim Test Exp. 2008;13:27–35.Google Scholar
  21. 21.
    Sakaguchi H, Ryan C, Ovigne JM, Schroeder KR, Ashikaga T. Predicting skin sensitization potential and inter-laboratory reproducibility of a human Cell Line Activation Test (h-CLAT) in the European Cosmetics Association (COLIPA) ring trials. Toxicol In Vitro. 2010;24:1810–20.CrossRefPubMedGoogle Scholar
  22. 22.
    EC EURL-ECVAM. Recommendation on the human Cell Line Activation Test (h-CLAT) for skin sensitisation testing. 2013. Accessible at: https://eurl-ecvam.jrc.ec.europa.eu/eurl-ecvam-recommendations.
  23. 23.
    Takenouchi O, Miyazawa M, Saito K, Ashikaga T, Sakaguchi H. Predictive performance of the human Cell Line Activation Test (h-CLAT) for lipophilic chemicals with high octanol-water partition coefficients. J Toxcol Sci. 2013;38:599–609.CrossRefGoogle Scholar
  24. 24.
    Nukada Y, Ashikaga T, Sakaguchi H, Sono S, Mugita N, Hirota M, Miyazawa M, Ito Y, Sasa H, Nishiyama N. Predictive performance for human skin sensitizing potential of the Human Cell Line Activation Test (h-CLAT). Contact Dermatitis. 2011;65:343–53.CrossRefPubMedGoogle Scholar
  25. 25.
    DB-ALM (IVITTOX). Protocol 158: human Cell Line Activation Test (h-CLAT). 2014. http://ecvam-dbalm.jrc.ec.europa.eu/. Accessed 6 Jan 2015.
  26. 26.
    National Toxicology Program. Development of integrated testing strategies. 2014. http://ntp.niehs.nih.gov/pubhealth/evalatm/integrated-testing-strategies/index.html. Accessed 7 Jan 2015.
  27. 27.
    Takenouchi O, Fukui S, Okamoto K, Kurotani S, Imai N, Fujishiro M, Kyotani D, Kato Y, Kasahara T, Fujita M, Toyoda A, Sekiya D, Watanabe S, Seto H, Hirota M, Ashikaga T, Miyazawa M. Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals. J Appl Toxicol. 2014;35:1318–32.CrossRefGoogle Scholar
  28. 28.
    Tsujita-Inoue K, Hirota M, Ashikaga T, Atobe T, Kouzuki H, Aiba S. Skin sensitization risk assessment model using artificial neural network analysis of data from multiple in vitro assays. Toxicol In Vitro. 2014;28:626–39.CrossRefPubMedGoogle Scholar
  29. 29.
    Urbisch D, Mehling A, Guth K, Ramirez T, Honarvar N, Kolle S, Landsiedel R, Jaworska J, Kern PS, Gerberick F, Natsch A, Emter R, Ashikaga T, Miyazawa M, Sakaguchi H. Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol. 2014; doi: 10.1016/j.yrtph.2014.12.008.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Van der Veen JW, Rorije E, Emter R, Natch A, van Loveren H, Ezendam J. Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regul Toxicol Pharmacol. 2014;69:371–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Jaworska J, Natsch A, Ryan C, Strickland J, Ashikaga T, Miyazawa M, Sakaguchi H. Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy. Arch Toxicol. 2015;89:2355–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Mizuno M, Yoshida M, Kodama T, Kosaka N, Okamoto K, Sono S, Yamada T, Hasegawa S, Ashikaga T, Kuwahara H, Sakaguchi H, Sato J, Ota N, Okamoto Y, Ohno Y. Effects of pre-culture conditions on the human Cell Line Activation Test (h-CLAT) results: results of the 4th Japanese inter-laboratory study. Altern Anim Test Exp. 2008;13:70–82.Google Scholar
  33. 33.
    Kosaka M, Okamoto K, Mizuno M, Yamada T, Yoshida M, Kodama T, Sono S, Ashikaga T, Sato J, Ota N, Hasegawa S, Okamoto Y, Kuwahara H, Sakaguchi H, Ohno Y. A study of the criteria for selection of THP-1 cells in the human Cell Line Activation Test (h-CLAT): results of 2nd Japanese inter-laboratory study. Altern Anim Test Exp. 2008;13:55–62.Google Scholar
  34. 34.
    Nukada Y, Miyazawa M, Kosaka N, Ito Y, Sakaguchi H, Nishiyama N. Production of IL-8 in THP-1 cells following contact allergen stimulation via mitogen-activated protein kinase activation or tumor necrosis factor-alpha production. J Toxicol Sci. 2008;33:175–85.CrossRefPubMedGoogle Scholar
  35. 35.
    Suzuki M, Hirota M, Hagino S, Itagaki H, Aiba S. Evaluation of changes of cell-surface thiols as a new biomarker for in vitro sensitization test. Toxicol In Vitro. 2009;23:687–96.CrossRefPubMedGoogle Scholar
  36. 36.
    Hoya M, Hirota M, Suzuki M, Hagino S, Itagaki H, Aiba S. Development of an in vitro photosensitization assay using human monocyte-derived cells. Toxicol In Vitro. 2009;23:911–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Hennen J, Aeby P, Goebel C, Schettgen T, Oberli A, Kalmes M, Blömeke B. Cross talk between keratinocytes and dendritic cells: impact on the prediction of sensitization. Toxicol Sci. 2011;123:501–10.CrossRefPubMedGoogle Scholar
  38. 38.
    Tamura A, Fukumoto I, Yui N, Matsumura M, Miura H. Increasing the repeating units of ethylene glycol-based dimethacrylates directed toward reduced oxidative stress and co-stimulatory factors expression in human monocytic cells. J Biomed Mater Res. 2014; doi: 10.1002/jbm.a.35251.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Kao CorporationTochigiJapan
  2. 2.Shiseido, Co., Ltd.YokohamaJapan

Personalised recommendations