Utilization of Peptide Reactivity Assays for the Prediction of Skin Sensitization

  • G. Frank GerberickEmail author
  • John A. Troutman
  • Leslie M. Foertsch
  • Petra S. Kern


Due to the current ban on animal testing, the need for robust and reliable animal alternative test methods is critical. Reactivity of chemical allergens with proteins has long been established as a key step in induction of skin sensitization. Based on this, two in chemico approaches have been developed: the Direct Peptide Reactivity Assay (DPRA) and the Peroxidase Peptide Reactivity Assay (PPRA). Both assays utilize synthetic peptides which contain either a single cysteine or lysine amino acid as its nucleophilic center for assessing skin sensitization potential of chemicals. Chemical reactivity is determined by using analytical methods to measure the depletion of free peptide following a 24-h incubation of test chemical and peptide. By comparing reactivity data to local lymph node assay data, prediction models have been developed for both assays. These models allow for making hazard predictions and binning a chemical into reactivity categories. The DPRA has been thoroughly evaluated for its reproducibility, transferability, and accuracy under formal validation studies. The PPRA has not yet reached validated status but is undergoing interlaboratory evaluation. Although showing good correlation to established animal models, the data obtained from both of these assays should be considered in combination with other information in the context of integrated approaches such as weight of evidence or integrated testing strategies.


  1. 1.
    Basketter DA, Evans P, Fielder RJ, Gerberick GF, Dearman RJ, Kimber I. Local lymph node assay—validation and use in practice. Food Chem Toxicol. 2002;40:593–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Dearman RJ, Basketter DA, Kimber I. Local lymph node assay—use in hazard and risk assessment. J Appl Toxicol. 1999;19:299–306.CrossRefPubMedGoogle Scholar
  3. 3.
    Gerberick GF, Ryan CA, Kimber I, Dearman RJ, Lea LJ, Basketter DA. Local lymph node assay: validation assessment for regulatory purposes. Am J Dermat. 2000;11:3–18.Google Scholar
  4. 4.
    Kimber I, Dearman RJ, Scholes EW, Basketter DA. The local lymph node assay: development and applications. Toxicology. 1994;93:13–31.CrossRefPubMedGoogle Scholar
  5. 5.
    Kimber I, Dearman RJ, Basketter DA, Ryan CA, Gerberick GF. The local lymph node assay: past, present and future. Contact Dermatitis. 2002;47:315–28.CrossRefPubMedGoogle Scholar
  6. 6.
    Dupuis G, Benezra C, editors. Allergic contact dermatitis to simple chemicals: a molecular approach. New York: Marcel Dekker Inc.; 1982.Google Scholar
  7. 7.
    Gerberick F, Aleksic M, Basketter D, Casati S, Karlberg A-T, Kern P, Kimber I, Lepoittevin J-P, Natsch A, Ovigne JM, et al. Chemical reactivity measurement and the predictive identification of skin sensitizers: the report and recommendations of ECVAM workshop 64. ATLA. 2008;36:215–42.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Landsteiner K, Jacobs J. Studies on the sensitization of animals with simple chemical compounds. J Exp Med. 1936;64:625–39.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lepoittevin J-P, Basketter DA, Goossens A, Karlberg A-T, editors. Allergic contact dermatitis: the molecular basis. Berlin: Springer; 1998.Google Scholar
  10. 10.
    OECD. The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins. Part 1: scientific evidence. Series on testing and assessment no. 168. 2012. Online at:
  11. 11.
    Ryan CA, Hulette BC, Gerberick GF. Review: approaches for the development of cell based in vitro methods for contact sensitization. Toxicol In Vitro. 2001;15:43–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Ahlfors SR, Sterner O, Hansson C. Reactivity of contact allergenic haptens to amino acid residues in a model carrier peptide, and characterization of formed peptide-hapten adducts. Skin Pharmacol Appl Ski Physiol. 2003;16:59–68.CrossRefGoogle Scholar
  13. 13.
    Alvarez-Sanchez R, Basketter DA, Pease C, Lepoittevin J-P. Studies of chemical selectivity of hapten, reactivity, and skin sensitization potency. 3. Synthesis and studies on the reactivity toward model nucleophiles of the 13C-labeled skin sensitizers, 5-chloro-2-methylisothia- zol-3-one (MCI) and 2-methylisothiazol-3-one (MI). Chem Res Toxicol. 2003;16:627–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Meschkat E, Barratt MD, Lepoittevin J-P. Studies of the chemical selectivity of hapten, reactivity, and skin sensitization potency. 1. Synthesis and studies on the reactivity toward model nucleophiles of the (13)C-labeled skin sensitizers hex-1-ene- and hexane-1,3-sultones. Chem Res Toxicol. 2001;14:110–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Aleksic M, Thain E, Roger D, Saib O, Davies M, Li J, Aptula A, Zazzeroni R. Reactivity profiling: covalent modification of single nucleophile peptides for skin sensitization risk assessment. Toxicol Sci. 2009;108:401–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Alvarez-Sanchez R, Basketter DA, Pease C, Lepoittevin J-P. Covalent binding of the 13C-labeled sensitizers 5-chloro-2- methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI) to a model peptide and glutathione. Bioorg Med Chem Lett. 2004a;14:365–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Alvarez-Sanchez R, Divkovic M, Basketter DA, Pease C, Panico M, Dell A, Morris H, Lepoittevin J-P. Effect of glutathione on the covalent binding of the 13C-labeled skin sensitizer 5-chloro-2- methylisothiazol-3-one (MCI) to human serum albumin: identification of adducts by NMR, MALDI-MS and nano-ES MS/MS. Chem Res Toxicol. 2004b;17:1280–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Aptula AO, Patlewicz G, Roberts DW, Schultz TW. Non- enzymatic glutathione reactivity and in vitro toxicity: a non-animal approach to skin sensitization. Toxicol In Vitro. 2006;20:239–47.CrossRefPubMedGoogle Scholar
  19. 19.
    Chipinda I, Ajibola RO, Morakinyo MK, Ruwona TB, Simoyi RH, Siegel PD. Rapid and simple kinetic screening assay for electrophilic dermal sensitizers using nitrobenzenethiol. Chem Res Toxicol. 2010;23:918–25.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Enoch SJ, Roberts DW, Cronin MTD. Electrophilic reaction chemistry of low molecular weight respiratory sensitizers. Chem Res Toxicol. 2009;22:1447–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Gerberick GF, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin J-P. Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci. 2004;81:332–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Gerberick GF, Vassallo JD, Foertsch LM, Price BB, Chaney JG, Lepoittevin J-P. Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach. Toxicol Sci. 2007;97:417–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Katon H, Okamoto M, Yamashita K, Nakamura Y, Fukumori Y, Nakai K, Kaneko H. Peptide-binding assessment using mass spectrometry as a new screening method for skin sensitization. J Toxicol Sci. 2003;28:19–24.CrossRefGoogle Scholar
  24. 24.
    Natsch A, Gfeller H. LC-MS-based characterization of peptide reactivity of chemicals to improve the in vitro prediction of skin sensitization potential. Toxicol Sci. 2008;106:464–78.CrossRefPubMedGoogle Scholar
  25. 25.
    Natsch A, Gfeller H, Rothaupt M, Ellis G. Utility and limitations of a peptide reactivity assay to predict fragrance allergens in vitro. Toxicol In Vitro. 2007a;21:1220–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Natsch A, Ryan CA, Foertsch L, Emter R, Jaworska J, Gerberick F, Kern P. A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J Appl Toxicol. 2007b;33:1337–52.Google Scholar
  27. 27.
    Roberts DW, Patlewicz G, Kern PS, Gerberick GF, Kimber I, Dearman R, Ryan C, Basketter D, Aptula AO. Mechanistic applicability domain: classification of a local lymph node assay dataset for skin sensitization. Chem Res Toxicol. 2007;20:1019–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Schultz TW, Yarbrough JW, Johnson EL. Structure-activity relationships for reactivity of carbonyl-containing compounds with glutathione. SAR QSAR Environ Res. 2005;16:313–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Gerberick GF, Troutman JA, Foertsch LM, Vassallo JD, Quijano M, Dobson RL, Goebel C, Lepoittevin JP. Investigation of peptide reactivity of pro-hapten skin sensitizers using a peroxidase-peroxide oxidation system. Toxicol Sci. 2009;112:164–74.CrossRefPubMedGoogle Scholar
  30. 30.
    Troutman JA, Foertsch LM, Kern PS, Dai HJ, Quijano M, Dobson RL, Lalko JF, Lepoittevin JP, Gerberick GF. The incorporation of lysine into the peroxidase peptide reactivity assay for skin sensitization assessments. Toxicol Sci. 2011;122:422–36.CrossRefPubMedGoogle Scholar
  31. 31.
    Hartung T, Bremer S, Casati S, Coecke S, corvi R, Fortaner S, Gribaldo L, Halder M, Hoffman S, Roi AJ, Prieto P, Sabbioni E, Scott L, Worth A, Zuang V. A modular approach to the ECVAM principles on test validity. Altern Lab Anim. 2004;32:467–72.PubMedGoogle Scholar
  32. 32.
    EURL ECVAM. Recommendation on the direct peptide reactivity assay (DPRA) for skin sensitization testing. European Commission Joint Research Center Institute for Health and Consumer Protection. 2013.
  33. 33.
    EURL ECVAM. Direct peptide reactivity assay (DPRA) validation study report. European Comission Joint Research Center Institute for Health and Consumer Protection. 2012. Accessible online at:
  34. 34.
    Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol. 2011;85:367–485.CrossRefPubMedGoogle Scholar
  35. 35.
    Jaworska J, Harol A, Kern PS, Gerberick GF. Integrating non-animal test information into an adaptiveTesting strategy – skin sensitization proof of concept case. ALTEX. 2011;28:211–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Jaworska J, Dancik Y, Kern P, Gerberick F, Natsch A. Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice. J Appl Toxicol. 2013;33(11):1353–64.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Roberts DW, Aptula AO. Determinants of skin sensitisation potential. J Appl Toxicol. 2008;28(3):377–87.CrossRefPubMedGoogle Scholar
  38. 38.
    Bauch C, Kolle SN, Ramirez T, Eltze T, Fabian E, Mehling A, et al. Putting the parts together: combining in vitro methods to test for skin sensitizing potentials. Regul Toxicol Pharmacol. 2012;63:489–504.CrossRefPubMedGoogle Scholar
  39. 39.
    UN GHS. Globally harmonized system of classification and labeling of chemicals, fourth revised condition. New York, Geneva: United Nations; 2011. ST/SG/AC. 10/30 Rev4Google Scholar
  40. 40.
    van der Veen JW, Rorije E, Emter R, Natsch A, van LH, Ezendam J. Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regul Toxicol Pharmacol. 2014;69(3):371–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Nukada Y, Miyazawa M, Kazutoshi S, Sakaguchi H, Nishiyama N. Data integration of non-animal tests for the development of a test battery to predict the skin sensitizing potential and potency of chemicals. Toxicol In Vitro. 2013;27:609–18.CrossRefPubMedGoogle Scholar
  42. 42.
    Tsujita-Inoue K, Hirota M, Ashikaga T, Atobe T, Kouzuki H, Aiba S. Skin sensitization risk assessment model using artificial neural network analysis of data from multiple in vitro assays. Toxicol In Vitro. 2014;28:626–39.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • G. Frank Gerberick
    • 1
    Email author
  • John A. Troutman
    • 1
  • Leslie M. Foertsch
    • 1
  • Petra S. Kern
    • 2
  1. 1.The Procter and Gamble Company, Mason Business CenterCincinnatiUSA
  2. 2.The Procter and Gamble Company, Beijing Innovation CenterBeijingChina

Personalised recommendations