Advertisement

Evolving Instances for Maximizing Performance Differences of State-of-the-Art Inexact TSP Solvers

  • Jakob Bossek
  • Heike Trautmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10079)

Abstract

Despite the intrinsic hardness of the Traveling Salesperson Problem (TSP) heuristic solvers, e.g., LKH+restart and EAX+restart, are remarkably successful in generating satisfactory or even optimal solutions. However, the reasons for their success are not yet fully understood. Recent approaches take an analytical viewpoint and try to identify instance features, which make an instance hard or easy to solve. We contribute to this area by generating instance sets for couples of TSP algorithms A and B by maximizing/minimizing their performance difference in order to generate instances which are easier to solve for one solver and much harder to solve for the other. This instance set offers the potential to identify key features which allow to distinguish between the problem hardness classes of both algorithms.

Keywords

TSP Instance hardness Algorithm selection Feature selection 

Notes

Acknowledgements

The authors acknowledge support from the European Center of Information Systems (ERCIS).

References

  1. 1.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2007)MATHGoogle Scholar
  2. 2.
    Bischl, B., Lang, M., Richter, J., Bossek, J., Judt, L., Kuehn, T., Studerus, E., Kotthoff, L.: mlr: Machine Learning in R. R package version 2.6 (2015). http://CRAN.R-project.org/package=mlr
  3. 3.
    Bossek, J.: Feature-basierte performance-analyse von Algorithmen für das travelling-salesperson-problem. Bachelor thesis, Technical University of Dortmund (2012)Google Scholar
  4. 4.
    Bossek, J.: salesperson: Computation of Instance Feature Sets and R Interface to the State-of-the-Art Solvers for the Traveling Salesperson Problem. R package version 1.0 (2015). https://github.com/wwu-wi/salesperson/
  5. 5.
    Fischer, T., Stützle, T., Hoos, H.H., Merz, P.: An analysis of the hardness of TSP instances for two high-performance algorithms. In: Proceedings of the 6th Metaheuristics International Conference, Vienna, Austria, pp. 361–367 (2005)Google Scholar
  6. 6.
    Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math Program. Comput. 1(2–3), 119–163 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation. Artif. Intell. 206, 79–111 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19084-6_18 CrossRefGoogle Scholar
  9. 9.
    Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI Mag. 35(3), 48–60 (2014)Google Scholar
  10. 10.
    Lacoste, J.D., Hoos, H.H., Stützle, T.: On the empirical time complexity of state-of-the-art inexact TSP solvers, optimization Letters, to appearGoogle Scholar
  11. 11.
    Mersmann, O., Bischl, B., Bossek, J., Trautmann, H., Markus, W., Neumann, F.: Local search and the traveling salesman problem: a feature-based characterization of problem hardness. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 115–129. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34413-8_9 CrossRefGoogle Scholar
  12. 12.
    Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neumann, F.: A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Ann. Math. Artif. Intell. 1–32 (2013). http://dx.doi.org/10.1007/s10472-013-9341-2
  13. 13.
    Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem. INFORMS J. Comput. 25(2), 346–363 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nallaperuma, S., Wagner, M., Neumann, F., Bischl, B., Mersmann, O., Trautmann, H.: A feature-based comparison of local search and the christofides algorithm for the travelling salesperson problem. In: Foundations of Genetic Algorithms (FOGA) (2013)Google Scholar
  15. 15.
    Pihera, J., Musliu, N.: Application of machine learning to algorithm selection for TSP. In: Fogel, D., et al. (ed.) Proceedings of the IEEE 26th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE Press (2014)Google Scholar
  16. 16.
    Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algorithms by learning from evolved instances. Ann. Math. Artif. Intell. 61(2), 87–104 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Informations SystemsUniversity of MünsterMünsterGermany

Personalised recommendations