Advertisement

Fusion of 3D-Echocardiography and Other Imaging Modalities: Hybrid Imaging

  • Eduardo Casas RojoEmail author
  • María Valverde Gómez
Chapter

Abstract

Cardiac hybrid imaging combines different imaging modalities to obtain a better approximation of real heart structures and function. In the last few years, the development of new imaging technologies and software products coupled with the growing of interventional cardiology, have favored the increasing popularity of the different types of cardiac fusion imaging. Many of them are focused on the merge of anatomical and functional aspects of the coronary artery disease. Examples of those are the combination of multidetector computed cardiac tomography (MDCT) and myocardial perfusion imaging (either with single-photon emission computed tomography (SPECT)- or with positron emission tomography (PET), fusion of PET and cardiac magnetic resonance (CMR), and fusion of MDCT and 3D speckle-tracking (3DST) rest and stress echocardiography. However there is another growing field in hybrid imaging related to cardiac interventional procedures such as closure of atrial septal defects and left atrial appendage, interventions on the mitral and aortic valve or electrophysiology techniques. Some of these interventions need dynamic imaging with both high-temporal and spatial image resolutions that any of the previous mentioned techniques can offer. Others can beneficiate from hybrid techniques combining MDCT and fluoroscopy. In this chapter, on one hand we are going to review the basis of hybrid techniques and combined methods for diagnosis including already validated modalities of fusion, the feasibility of stress protocols in the context of 3D echocardiography and the latest fusion of ultrasound and MDCT; and on the other hand, we will explore therapeutic guiding fusion of 3D transesophageal echocardiography (3DTEE) and fluoroscopy (the only dynamic fusion technique available) and its clinical applications.

Keywords

Positron Emission Tomography Cardiac Resynchronization Therapy Invasive Coronary Angiography Mitral Valve Repair Transcatheter Aortic Valve Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Video 8.1

(WMV 1879 kb)

Video 8.2

(MP4 7149 kb)

Video 8.3

(WMV 1989 kb)

Video 8.4

(MP4 857 kb)

Video 8.5

(MP4 4622 kb)

References

  1. 1.
    Namdar M, Hany TF, Koepfli P, Siegrist PT, Burger C, Wyss CA, Luscher TF, von Schulthess GK, Kaufmann PA. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med. 2005;46(6):930–5. PubMed PMID: 15937302PubMedGoogle Scholar
  2. 2.
    Gaemperli O, Schepis T, Kalff V, Namdar M, Valenta I, Stefani L, Desbiolles L, Leschka S, Husmann L, Alkadhi H, Kaufmann PA. Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging. 2007;34(7):1097–106. Epub 2007 Jan 24. PubMed PMID: 17245532CrossRefPubMedGoogle Scholar
  3. 3.
    Gaemperli O, Schepis T, Valenta I, Husmann L, Scheffel H, Duerst V, Eberli FR, Luscher TF, Alkadhi H, Kaufmann PA. Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J Nucl Med. 2007;48(5):696–703. Erratum in: J Nucl Med. 2007;48(7):1095. PubMed PMID: 17475956CrossRefPubMedGoogle Scholar
  4. 4.
    Gaemperli O, Saraste A, Knuuti J. Cardiac hybrid imaging. Eur Heart J Cardiovasc Imaging. 2012;13(1):51–60. doi: 10.1093/ejechocard/jer240. Epub 2011 Nov 17. Review. PubMed PMID: 22094239CrossRefPubMedGoogle Scholar
  5. 5.
    White JA, Fine N, Gula LJ, Yee R, Al-Admawi M, Zhang Q, Krahn A, Skanes A, MacDonald A, Peters T, Drangova M. Fused whole-heart coronary and myocardial scar imaging using 3-T CMR. Implications for planning of cardiac resynchronization therapy and coronary revascularization. JACC Cardiovasc Imaging. 2010;3(9):921–30. doi: 10.1016/j.jcmg.2010.05.014. PubMed PMID: 20846626CrossRefPubMedGoogle Scholar
  6. 6.
    Walimbe V, Jaber WA, Garcia MJ, Shekhar R. Multimodality cardiac stress testing: combining real-time 3-dimensional echocardiography and myocardial perfusion SPECT. J Nucl Med. 2009;50(2):226–30. doi: 10.2967/jnumed.108.053025. Epub 2009 Jan 21. PubMed PMID: 1916423CrossRefPubMedGoogle Scholar
  7. 7.
    Ahmad M, Xie T, McCulloch M, Abreo G, Runge M. Real-time three-dimensional dobutamine stress echocardiography in assessment stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. J Am Coll Cardiol. 2001;37(5):1303–9. PubMed PMID: 11300439CrossRefPubMedGoogle Scholar
  8. 8.
    Matsumura Y, Hozumi T, Arai K, Sugioka K, Ujino K, Takemoto Y, Yamagishi H, Yoshiyama M, Yoshikawa J. Non-invasive assessment of myocardial ischaemia using new real-time three-dimensional dobutamine stress echocardiography: comparison with conventional two-dimensional methods. Eur Heart J. 2005;26(16):1625–32. Epub 2005 Apr 7. PubMed PMID: 15817607CrossRefPubMedGoogle Scholar
  9. 9.
    Aggeli C, Giannopoulos G, Misovoulos P, Roussakis G, Christoforatou E, Kokkinakis C, Brili S, Stefanadis C. Real-time three-dimensional dobutamine stress echocardiography for coronary artery disease diagnosis: validation with coronary angiography. Heart. 2007;93(6):672–5. Epub 2006 Nov 3. PubMed PMID: 17085530; PubMed Central PMCID: PMC1955206CrossRefPubMedGoogle Scholar
  10. 10.
    Takeuchi M, Otani S, Weinert L, Spencer KT, Lang RM. Comparison of contrast-enhanced real-time live 3-dimensional dobutamine stress echocardiography with contrast 2-dimensional echocardiography for detecting stress-induced wall-motion abnormalities. J Am Soc Echocardiogr. 2006;19(3):294–9. PubMed PMID: 16500492CrossRefPubMedGoogle Scholar
  11. 11.
    Bhan A, Kapetanakis S, Rana BS, Ho E, Wilson K, Pearson P, Mushemi S, Deguzman J, Reiken J, Harden MD, Walker N, Rafter PG, Monaghan MJ. Real-time three-dimensional myocardial contrast echocardiography: is it clinically feasible? Eur J Echocardiogr. 2008;9(6):761–5. doi: 10.1093/ejechocard/jen143. Epub 2008 May 1. PubMed PMID: 18490290CrossRefPubMedGoogle Scholar
  12. 12.
    Aggeli C, Felekos I, Roussakis G, Kazazaki C, Lagoudakou S, Pietri P, Tousoulis D, Pitsavos C, Stefanadis C. Value of real-time three-dimensional adenosine stress contrast echocardiography in patients with known or suspected coronary artery disease. Eur J Echocardiogr. 2011;12(9):648–55. doi: 10.1093/ejechocard/jer103. Epub 2011 Jul 19. PubMed PMID: 21771801CrossRefPubMedGoogle Scholar
  13. 13.
    Yoshitani H, Takeuchi M, Mor-Avi V, Otsuji Y, Hozumi T, Yoshiyama M. Comparative diagnostic accuracy of multiplane and multislice three-dimensional dobutamine stress echocardiography in the diagnosis of coronary artery disease. J Am Soc Echocardiogr. 2009;22(5):437–42. doi: 10.1016/j.echo.2009.02.005. PubMed PMID: 19307099CrossRefPubMedGoogle Scholar
  14. 14.
    Badano LP, Muraru D, Rigo F, Del Mestre L, Ermacora D, Gianfagna P. Proclemer High volume-rate three-dimensional stress echocardiography to assess inducible myocardial ischemia: a feasibility study. J Am Soc Echocardiogr. 2010;23(6):628–35. doi: 10.1016/j.echo.2010.03.020. PubMed PMID: 20434877CrossRefPubMedGoogle Scholar
  15. 15.
    Johri AM, Chitty DW, Hua L, Marincheva G, Picard MH. Assessment of image quality in real time three-dimensional dobutamine stress echocardiography: an integrated 2D/3D approach. Echocardiography. 2015;32(3):496–507. doi: 10.1111/echo.12692. Epub 2014 Jul 24. PubMed PMID: 25059625CrossRefPubMedGoogle Scholar
  16. 16.
    Casas-Rojo E, Fernández-Golfín C, Zamorano J. Hybrid imaging with coronary tomography and 3D speckle-tracking stress echocardiography fusion. Eur Heart J Cardiovasc Imaging. 2014;15(5):555. doi: 10.1093/ehjci/jet236. Epub 2013 Nov 7. PubMed PMID: 24204034CrossRefPubMedGoogle Scholar
  17. 17.
    Casas-Rojo E, Fernández-Golfín C, Ana G-M, Gorissen W, Zamorano J. Fusion between cardiac venous coronary computed tomography and three-dimensional speckle-tracking for selecting the appropriate vein for resynchronization therapy. Eur Heart J Cardiovasc Imaging. 2016; doi: 10.1093/ehjci/jew091.Google Scholar
  18. 18.
    Perk G, Kronzon I. Interventional echocardiography in structural heart disease. Curr Cardiol Rep. 2013;15(3):338. doi: 10.1007/s11886-012-0338-y.CrossRefPubMedGoogle Scholar
  19. 19.
    Corti R, Biaggi P, Gaemperli O, et al. Integrated x-ray and echocardiography imaging for structural heart interventions. EuroIntervention. 2013;9(7):863–9. doi: 10.4244/EIJV9I7A140.CrossRefPubMedGoogle Scholar
  20. 20.
    Gao G, Penney G, Ma Y, et al. Registration of 3D trans-esophageal echocardiography to X-ray fluoroscopy using image-based probe tracking. Med Image Anal. 2012;16(1):38–49. doi: 10.1016/j.media.2011.05.003.CrossRefPubMedGoogle Scholar
  21. 21.
    Clegg SD, Chen SJ, Nijhof N, et al. Integrated 3D echo-X ray to optimize image guidance for structural heart intervention. JACC Cardiovasc Imaging. 2015;8(3):371–4. doi: 10.1016/j.jcmg.2014.06.024.CrossRefPubMedGoogle Scholar
  22. 22.
    Quaife RA, Salcedo EE, Carroll JD. Procedural guidance using advance imaging techniques for percutaneous edge-to-edge mitral valve repair. Curr Cardiol Rep. 2014;16(2):452. doi: 10.1007/s11886-013-0452-5.CrossRefPubMedGoogle Scholar
  23. 23.
    Holmes DR, Mack MJ, Kaul S, et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol. 2012;59(13):1200–54. doi: 10.1016/j.jacc.2012.01.001.CrossRefPubMedGoogle Scholar
  24. 24.
    Smith LA, Dworakowski R, Bhan A, et al. Real-time three-dimensional transesophageal echocardiography adds value to transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2013;26(4):359–69. doi: 10.1016/j.echo.2013.01.014.CrossRefPubMedGoogle Scholar
  25. 25.
    Philip F, Athappan G, Tuzcu EM, Svensson LG, Kapadia SR. MitraClip for severe symptomatic mitral regurgitation in patients at high surgical risk: a comprehensive systematic review. Catheter Cardiovasc Interv. 2014;84(4):581–90. doi: 10.1002/ccd.25564.CrossRefPubMedGoogle Scholar
  26. 26.
    Sündermann SH, Biaggi P, Grünenfelder J, et al. Safety and feasibility of novel technology fusing echocardiography and fluoroscopy images during MitraClip interventions. EuroIntervention. 2014;9(10):1210–6. doi: 10.4244/EIJV9I10A203.CrossRefPubMedGoogle Scholar
  27. 27.
    Cheung A, Stub D, Moss R, et al. Transcatheter mitral valve implantation with Tiara bioprosthesis. EuroIntervention. 2014;10(Suppl. U):115–9. doi: 10.4244/EIJV10SUA17.CrossRefGoogle Scholar
  28. 28.
    Biaggi P, Fernandez-Golfín C, Hahn R, Corti R. Hybrid imaging during transcatheter structural heart interventions. Curr Cardiovasc Imaging Rep. 2015;8:33. doi: 10.1007/s12410-015-9349-6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rodríguez Muñoz D, Lázaro Rivera C, Zamorano Gómez JL. Guidance of treatment of perivalvular prosthetic leaks. Curr Cardiol Rep. 2014;16(1):430. doi: 10.1007/s11886-013-0430-y.CrossRefPubMedGoogle Scholar
  30. 30.
    Gonzalves A, Almeria C, Marcos-Alberca P, et al. Three-dimensional echocardiography in paravalvular aortic regurgitation assessment after transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2012;25(1):47–55. doi: 10.1016/j.echo.2011.08.019.CrossRefGoogle Scholar
  31. 31.
    Lázaro C, Hinojar R, Zamorano JL. Cardiac imaging in prosthetic paravalvular leaks. Cardiovasc Diagn Ther. 2014;4(4):307–13. doi: 10.3978/j.issn.2223-3652.2014.07.01.PubMedPubMedCentralGoogle Scholar
  32. 32.
    González A, Zamorano JL. Review of ESC 2014 Barcelona. Spain Eur Med J. 2014;2(October):54–60.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cardiology DepartmentHospital Ramon y CajalMadridSpain

Personalised recommendations