Guiding Structural Interventions with 3D-Echo

  • Covadonga Fernández-Golfín LobánEmail author
  • Alejandra Carbonell San Román
  • José Luis Zamorano


Percutaneous treatment of structural heart disease is increasing. Both fluoroscopy and transesofageal echocardiography are needed to guide the procedures. Three-dimensional echocardiography overcomes some limitations encountered with two-dimensional echocardiography before, during and after the procedure, to evaluate results and assess possible complications. In the present chapter the role of three-dimensional echocardiography in these procedures is reviewed.


3D Transesofageal echocardiography Percutaneous structural heart disease treatment TAVR Paravalvular leak Mitra Clip 

Supplementary material

Video 7.1

Real time 3D image after atrial septal defect closure. En face view from the left atrium showing the Amplatzer device left disc is shown (AVI 5393 kb)

Video 7.2

3D en face view of aortic Edward Sapiens valve. Valve leaflets are clearly seen with normal movement (AVI 828 kb)

Video 7.3

Zoom 3D image of the mitral valve. En face view (surgical view) with the aortic valve at 12 o’clock and the left atrial appendage at 9–10 o’clock. The anterior and posterior leaflets can be evaluated. No morphological leaflets abnormalities area noted, however a restricted motion of both leaflet is shown with a central coaptation defect (MP4 563 kb)

Video 7.4

Zoom 3D image of the mitral valve after MitraClip implantation. Two devices were placed at the level of A2 and P2. The devices as well as the double orifice valve opening are shown (MP4 603 kb)

Video 7.5

3D color imaging showing a mitral prostheses with severe paravalvular regurgitation, en face visualization from the atrial aspect in a surgical view position. Several leaks at the level of the posterior and posterolateral ring are noted (MP4 654 kb)


  1. 1.
    Faletra FF, Pedrazzini G, Pasotti E, et al. 3D TEE during catheter-based interventions. JACC Cardiovasc Imaging. 2014;7:292–308.CrossRefPubMedGoogle Scholar
  2. 2.
    Balzer J, Kelm M, Kühl HP. Real-time three-dimensional transoesophageal echocardiography for guidance of non-coronary interventions in the catheter laboratory. Eur J Echocardiogr. 2009;10:341–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Zamorano JL, Badano LP, Bruce C, et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur Heart J. 2011;32:2189–214.CrossRefPubMedGoogle Scholar
  4. 4.
    Bartel T, Müller S. Device closure of interatrial communications: peri-interventional echocardiographic assessment. Eur Heart J Cardiovasc Imaging. 2013;14:618–24.CrossRefPubMedGoogle Scholar
  5. 5.
    Kijima Y, Akagi T, Nakagawa K, et al. Three-dimensional echocardiography guided closure of complex multiple atrial septal defects. Echocardiography. 2014;31:E304–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Zamorano JL, Gonçalves A, Lang R. Imaging to select and guide transcatheter aortic valve implantation. Eur Heart J. 2014;35:1578–87.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Smith LA, Monaghan MJ. Monitoring of procedures: peri-interventional echo assessment for transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging. 2013;14:840–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Altiok E, Koos R, Schröder J, et al. Comparison of two-dimensional and three-dimensional imaging techniques for measurement of aortic annulus diameters before transcatheter aortic valve implantation. Heart. 2011;97:1578–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Smith LA, Dworakowski R, Bhan A, et al. Real-time three-dimensional transesophageal echocardiography adds value to transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2013;4:359–69.CrossRefGoogle Scholar
  10. 10.
    Santos N, de Agustin JA, Almeria C, et al. Prosthesis/annulus discongruence assessed by three-dimensional transesophageal echocardiography: a predictor of significant para valvular aortic regurgitation after transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging. 2012;13:931–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Kappetein AP, Head SJ, Généreux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the valve academic research consortium-2 consensus document (VARC-2). Eur J Cardiothorac Surg. 2012;42:S45–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Wunderlich NC, Siegel RJ. Peri-interventional echo assessment for the mitraclip procedure. Eur Heart J Cardiovasc Imaging. 2013;14:935–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Quaife RA, Salcedo EE, Carroll JD. Procedural guidance using advance imaging techniques for percutaneous edge-to-edge mitral valve repair. Curr Cardiol Rep. 2014;16:452. doi: 10.1007/s11886-013-0452-5.CrossRefPubMedGoogle Scholar
  14. 14.
    Jain S, Malouf JF. Incremental value of 3-D transesophageal echo- cardiographic imaging of the mitral valve. Curr Cardiol Rep. 2014;16:439. doi: 10.1007/s11886-013-0439-2.CrossRefPubMedGoogle Scholar
  15. 15.
    Lancellotti P, Moura L, Pierard LA, et al. European association of echocardiography recommendations for the assessment of valvu- lar regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:307–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Kahlert P, Plicht B, Schenk IM, et al. Direct assessment of size and shape of non-circular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr. 2008;21:912–21.CrossRefPubMedGoogle Scholar
  17. 17.
    de Agustín JA, Marcos-Alberca P, Fernandez-Golfin C, et al. Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr. 2012;25:815–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Faletra FF, Pedrazzini G, Pasotti E, et al. Role of real-time three dimensional transoesophageal echocardiography as guidance imaging modality during catheter based edge-to-edge mitral valve repair. Heart. 2013;99:1204–15.CrossRefPubMedGoogle Scholar
  19. 19.
    Kliger C, Eiros R, Isasti G, et al. Review of surgical prosthetic paravalvular leaks: diagnosis and catheter-based closure. Eur Heart J. 2013;34:638–49.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim MS, Casserly IP, Garcia JA, et al. Percutaneous transcatheter closure of prosthetic mitral paravalvular leaks: are we there yet? J Am Coll Cardiol Intv. 2009;2:81–90.CrossRefGoogle Scholar
  21. 21.
    Becerra JM, Almeria C, de Isla LP, et al. Usefulness of 3D transoesophageal echocardiography for guiding wires and closure devices in mitral perivalvular leaks. Eur J Echocardiogr. 2009;10:979–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Franco E, Almería C, de Agustín JA, et al. Three-dimensional color Doppler transesophageal echocardiography for mitral paravalvular leak quantification and evaluation of percutaneous closure success. J Am Soc Echocardiogr. 2014;27:1153–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Wunderlich NC, Beigel R, Swaans MJ, et al. Percutaneous interventions for left atrial appendage exclusion: options, assessment, and imaging using 2D and 3D echocardiography. JACC Cardiovasc Imaging. 2015;8:472–88.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Covadonga Fernández-Golfín Lobán
    • 1
    Email author
  • Alejandra Carbonell San Román
    • 1
  • José Luis Zamorano
    • 1
  1. 1.Cardiology DepartmentUniversity Hospital Ramón y CajalMadridSpain

Personalised recommendations