Advertisement

3D-Wall Motion Tracking: Measuring Myocardial Strain with 3D

  • Eduardo Casas RojoEmail author
Chapter
  • 755 Downloads

Abstract

The study of myocardial mechanics with echocardiography has been enhanced in the last two decades by strain analysis with tissue Doppler and 2D speckle tracking technologies. These methods offer a limited approach because of the angle and plane limitations. 3D speckle tracking is expected to overcome these limitations by using a three-dimensional approach. In this chapter, we will review the background and technical aspects of this technology; we will propose an acquisition protocol and explain the wide options of processing available; the different strain parameters will be defined and explained with a wider explanation of new indexes such as area strain or 3D strain; we will make a brief review of the clinical applications available in the current literature;and also the limitations and possible future improvements will be described.

Keywords

Left Ventricle Cardiac Resynchronization Therapy Intraclass Correlation Coefficient Circumferential Strain Radial Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Video 6.1

(WMV 197 kb)

Video 6.2

(AVI 3491 kb)

Video 6.3

(WMV 197 kb)

Video 6.4

(AVI 308 kb)

Video 6.5

(WMV 182 kb)

References

  1. 1.
    Bjørnstad K, al Amri M, Lingamanaicker J, Oqaili I, Hatle L. Interobserver and intraobserver variation for analysis of left ventricular wall motion at baseline and during low and high-dose dobutamine stress echocardiography in patients with high prevalence of wall motion abnormalities at rest. J Am Soc Echocardiogr. 1996;9(3):320–8. PubMed PMID: 8736017.CrossRefPubMedGoogle Scholar
  2. 2.
    Heimdal A, Støylen A, Torp H, Skjaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr. 1998;11(11):1013–9. PubMed PMID: 9812093.CrossRefPubMedGoogle Scholar
  3. 3.
    Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17(10):1021–9. PubMed PMID: 15452466.CrossRefPubMedGoogle Scholar
  4. 4.
    Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24(3):277–313. doi: 10.1016/j.echo.2011.01.015. PubMed PMID: 21338865.CrossRefPubMedGoogle Scholar
  5. 5.
    Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith HJ, et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation. 2005;112:3149–56.CrossRefPubMedGoogle Scholar
  6. 6.
    Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol. 2006;47:1313–27.CrossRefPubMedGoogle Scholar
  7. 7.
    Jurcut R, Wildiers H, Ganame J, D’hooge J, De BJ, Denys H, et al. Strain rate imaging detects early cardiac effects of pegylated liposomal Doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr. 2008;21:1283–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Bijnens B, Claus P, Weidemann F, Strotmann J, Sutherland GR. Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation. 2007;116:2453–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Bjork IC, Rozis E, Slordahl SA, Marwick TH. Incremental value of strain rate imaging to wall motion analysis for prediction of outcome in patients undergoing dobutamine stress echocardiography. Circulation. 2007;115:1252–9.Google Scholar
  10. 10.
    Kukulski T, Jamal F, Herbots L, D’hooge J, Bijnens B, Hatle L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol. 2003;41:810–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation. 2003;107:2120–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Weidemann F, Jung P, Hoyer C, Broscheit J, Voelker W, Ertl G, et al. Assessment of the contractile reserve in patients with intermediate coronary lesions: a strain rate imaging study validated by invasive myocardial fractional flow reserve. Eur Heart J. 2007;28:1425–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Faber L, Prinz C, Welge D, Hering D, Butz T, Oldenburg O, et al. Peak systolic longitudinal strain of the lateral left ventricular wall improves after septal ablation for symptomatic hypertrophic obstructive cardiomyopathy: a follow-up study using speckle tracking echocardiography. Int J Cardiovasc Imaging. 2011;27(3):325–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Jasaityte R, Dandel M, Lehmkuhl H, Hetzer R. Prediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging. Transplant Proc. 2009;41:277–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Singh GK, Cupps B, Pasque M, Woodard PK, Holland MR, Ludomirsky A. Accuracy and reproducibility of strain by speckle tracking in pediatric subjects with normal heart and single ventricular physiology: a two-dimensional speckle-tracking echocardiography and magnetic resonance imaging correlative study. J Am Soc Echocardiogr. 2010;23:1143–52.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Koopman LP, Slorach C, Hui W, Manlhiot C, McCrindle BW, Friedberg MK, et al. Comparison between different speckle Trucking and color tissue Doppler techniques to measure global and regional myocardial deformation in children. J Am Soc Echocardiogr. 2010;23:919–28.CrossRefPubMedGoogle Scholar
  17. 17.
    Sengupta PP, Mohan JC, Mehta V, Arora R, Pandian NG, Khandheria BK. Accuracy and pitfalls of early diastolic motion of the mitral annulus for diagnosing constrictive pericarditis by tissue Doppler imaging. Am J Cardiol. 2004;93:886–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang J, Khoury DS, Thohan V, Torre-Amione G, Nagueh SF. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation. 2007;115:1376–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Takeuchi M, Nishikage T, Nakai H, Kokumai M, Otani S, Lang RM. The assessment of left ventricular twist in anterior wall myocardial infarction using two-dimensional speckle tracking imaging. J Am Soc Echocardiogr. 2007;20:36–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Borg AN, Harrison JL, Argyle RA, Ray SG. Left ventricular torsion in primary chronic mitral regurgitation. Heart. 2008;94:597–603.CrossRefPubMedGoogle Scholar
  21. 21.
    Bertini M, Marsan NA, Delgado V, van Bommel RJ, Nucifora G, Borleffs CJ, et al. Effects of cardiac resynchronization therapy on left ventricular twist. J Am Coll Cardiol. 2009;54:1317–25.CrossRefPubMedGoogle Scholar
  22. 22.
    Takeuchi M, Borden WB, Nakai H, Nishikage T, Kokumai M, Nagakura T, et al. Reduced and delayed untwisting of the left ventricle in patients with hypertension and left ventricular hypertrophy: a study using twodimensional speckle tracking imaging. Eur Heart J. 2007;28:2756–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, Korinek J, Belohlavek M, Sundt III TM, et al. Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging. 2008;1:29–38.CrossRefPubMedGoogle Scholar
  24. 24.
    Rovner A, Smith R, Greenberg NL, Tuzcu EM, Smedira N, Lever HM, et al. Improvement in diastolic intraventricular pressure gradients in patients with HOCM after ethanol septal reduction. Am J Physiol Heart Circ Physiol. 2003;285:H2492–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Ammar KA, Paterick TE, Khandheria BK, Jan MF, Kramer C, Umland MM, Tercius AJ, Baratta L, Tajik AJ. Myocardial mechanics: understanding and applying three-dimensional speckle tracking echocardiography in clinical practice. Echocardiography. 2012;29(7):861–72. doi: 10.1111/j.1540-8175.2012.01712.x. Epub 2012 May 17. PubMed PMID: 22591237.CrossRefPubMedGoogle Scholar
  26. 26.
    Pérez de Isla L, Balcones DV, Fernández-Golfín C, Marcos-Alberca P, Almería C, Rodrigo JL, Macaya C, Zamorano J. Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking. J Am Soc Echocardiogr. 2009;22(4):325–30. doi: 10.1016/j.echo.2009.01.001. Erratum in: J Am Soc Echocardiogr. 2009 Jun;22(6):745-e1. PubMed PMID: 19345302.CrossRefPubMedGoogle Scholar
  27. 27.
    Saito K, Okura H, Watanabe N, Hayashida A, Obase K, Imai K, Maehama T, Kawamoto T, Neishi Y, Yoshida K. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr. 2009;22(9):1025–30. doi: 10.1016/j.echo.2009.05.021. Epub 2009 Jun 24. PubMed PMID: 19556106.CrossRefPubMedGoogle Scholar
  28. 28.
    Reant P, Barbot L, Touche C, Dijos M, Arsac F, Pillois X, Landelle M, Roudaut R, Lafitte S. Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. J Am Soc Echocardiogr. 2012;25:68–79.CrossRefPubMedGoogle Scholar
  29. 29.
    Urbano-Moral JA, Patel AR, Maron MS, Arias-Godinez JA, Pandian NG. Three-dimensional speckle-tracking echocardiography: methodological aspects and clinical potential. Echocardiography. 2012;29(8):997–1010. doi: 10.1111/j.1540-8175.2012.01773.x. Epub 2012 Jul 12. Review. PubMed PMID: 22783969.CrossRefPubMedGoogle Scholar
  30. 30.
    Shiota T, editor. 3D Echocardiography. Boca Raton: CRC Press; 2007.Google Scholar
  31. 31.
    Pérez de Isla L, Millán M, Lennie V, Quezada M, Guinea J, Macaya C, Zamorano J. Area strain: normal values for a new parameter in healthy people. Rev Esp Cardiol. 2011;64(12):1194–7. doi: 10.1016/j.recesp.2011.03.021. Spanish. PubMed PMID: 21684666.CrossRefPubMedGoogle Scholar
  32. 32.
    Wen H, Liang Z, Zhao Y, Yang K. Feasibility of detecting early left ventricular systolic dysfunction using global area strain: a novel index derived from three-dimensional speckle-tracking echocardiography. Eur J Echocardiogr. 2011;12(12):910–6. doi: 10.1093/ejechocard/jer162. Epub 2011 Sep 6. PubMed PMID: 21900298.CrossRefPubMedGoogle Scholar
  33. 33.
    Kaku K, Takeuchi M, Tsang W, Takigiku K, Yasukochi S, Patel AR, Mor-Avi V, Lang RM, Otsuji Y. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014;27(1):55–64. doi: 10.1016/j.echo.2013.10.002. Epub 2013 Nov 13. PubMed PMID: 24238753.CrossRefPubMedGoogle Scholar
  34. 34.
    Jasaityte R, Heyde B, D’hooge J. Current state of three-dimensional myocardial strain estimation using echocardiography. J Am Soc Echocardiogr. 2013;26(1):15–28. doi: 10.1016/j.echo.2012.10.005. Epub 2012 Nov 11. Review. PubMed PMID: 23149303.CrossRefPubMedGoogle Scholar
  35. 35.
    Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O. Reliability of Leith ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13(2):159–68. doi: 10.1093/ejechocard/jer174. Epub 2011 Sep 16. PubMed PMID: 21926118.CrossRefPubMedGoogle Scholar
  36. 36.
    Muraru D, Cucchini U, Mihăilă S, Miglioranza MH, Aruta P, Cavalli G, Cecchetto A, Padayattil-Josè S, Peluso D, Iliceto S, Badano LP. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: reference values and analysis of their physiologic and technical determinants. J Am Soc Echocardiogr. 2014;27(8):858–71. e1. doi: 10.1016/j.echo.2014.05.010. Epub 2014 Jun 26. PubMed PMID: 24975996.CrossRefPubMedGoogle Scholar
  37. 37.
    Kleijn SA, Pandian NG, Thomas JD, Perez de Isla L, Kamp O, Zuber M, Nihoyannopoulos P, Forster T, Nesser HJ, Geibel A, Gorissen W, Zamorano JL. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16(4):410–6. doi: 10.1093/ehjci/jeu213. Epub 2014 Oct 26. PubMed PMID: 25345661.CrossRefPubMedGoogle Scholar
  38. 38.
    Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, Kawamura R, Aonuma K. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging. 2009;2(6):451–9. doi: 10.1161/CIRCIMAGING.109.858480. Epub 2009 Sep 12. PubMed PMID: 19920043.CrossRefPubMedGoogle Scholar
  39. 39.
    Nesser HJ, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J, Sugeng L, Lang RM. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J. 2009;30(13):1565–73. doi: 10.1093/eurheartj/ehp187. Epub 2009 May 29. PubMed PMID: 19482868.CrossRefPubMedGoogle Scholar
  40. 40.
    Yuda S, Sato Y, Abe K, Kawamukai M, Kouzu H, Muranaka A, Kokubu N, Hashimoto A, Tsuchihashi K, Watanabe N, Miura T. Inter-vendor variability of left ventricular volumes and strains determined by three-dimensional speckle tracking echocardiography. Echocardiography. 2014;31(5):597–604. doi: 10.1111/echo.12432. Epub 2013 Nov 6. PubMed PMID: 25070187.CrossRefPubMedGoogle Scholar
  41. 41.
    Badano LP, Cucchini U, Muraru D, Al Nono O, Sarais C, Iliceto S. Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: inter-vendor consistency and reproducibility of strain measurements. Eur Heart J Cardiovasc Imaging. 2013;14(3):285–93. doi: 10.1093/ehjci/jes184. Epub 2012 Sep 11. PubMed PMID: 22968525.CrossRefPubMedGoogle Scholar
  42. 42.
    Gayat E, Ahmad H, Weinert L, Lang RM, Mor-Avi V. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2011;24(8):878–85. doi: 10.1016/j.echo.2011.04.016. Epub 2011 Jun 8. PubMed PMID: 21645991.CrossRefPubMedGoogle Scholar
  43. 43.
    Yodwut C, Weinert L, Klas B, Lang RM, Mor-Avi V. Effects of frame rate on three-dimensional speckle-tracking-based measurements of myocardial deformation. J Am Soc Echocardiogr. 2012;25(9):978–85. doi: 10.1016/j.echo.2012.06.001. Epub 2012 Jul 4. PubMed PMID: 22766029.CrossRefPubMedGoogle Scholar
  44. 44.
    Thebault C, Donal E, Bernard A, Moreau O, Schnell F, Mabo P, Leclercq C. Real-time three-dimensional speckle tracking echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Eur J Echocardiogr. 2011;12(1):26–32. doi: 10.1093/ejechocard/jeq095. Epub 2010 Aug 24. PubMed PMID: 20736292.CrossRefPubMedGoogle Scholar
  45. 45.
    Li CH, Carreras F, Leta R, Carballeira L, Pujadas S, Pons-Lladó G. Mechanical left ventricular dyssynchrony detection by endocardium displacement analysis with 3D speckle tracking technology. Int J Cardiovasc Imaging. 2010;26(8):867–70. doi: 10.1007/s10554-010-9644-x. Epub 2010 Aug 14. PubMed PMID: 20711677.CrossRefPubMedGoogle Scholar
  46. 46.
    Tanaka H, Tatsumi K, Matsumoto K, Kawai H, Hirata K. Emerging role of three-dimensional speckle tracking strain for accurate quantification of left ventricular dyssynchrony. Echocardiography. 2013;30(9):E292–5. doi: 10.1111/echo.12280. Epub 2013 Jun 6. PubMed PMID: 23741972.PubMedGoogle Scholar
  47. 47.
    Matsumoto K, Tanaka H, Tatsumi K, Miyoshi T, Hiraishi M, Kaneko A, Tsuji T, Ryo K, Fukuda Y, Yoshida A, Kawai H, Hirata K. Left ventricular dyssynchrony using three-dimensional speckle-tracking imaging as a determinant of torsional mechanics in patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2012;109(8):1197–205. doi: 10.1016/j.amjcard.2011.11.059. Epub 2012 Jan 28. PubMed PMID: 22285093.CrossRefPubMedGoogle Scholar
  48. 48.
    Mochizuki A, Yuda S, Oi Y, Kawamukai M, Nishida J, Kouzu H, Muranaka A, Kokubu N, Shimoshige S, Hashimoto A, Tsuchihashi K, Watanabe N, Miura T. Assessment of left atrial deformation and synchrony by three-dimensional speckle-tracking echocardiography: comparative studies in healthy subjects and patients with atrial fibrillation. J Am Soc Echocardiogr. 2013;26(2):165–74. doi: 10.1016/j.echo.2012.10.003. Epub 2012 Nov 8. PubMed PMID: 23140846.CrossRefPubMedGoogle Scholar
  49. 49.
    Tanaka H, Matsumoto K, Hiraishi M, Miyoshi T, Kaneko A, Tsuji T, Ryo K, Fukuda Y, Tatsumi K, Yoshida A, Kawai H, Hirata K. Multidirectional left ventricular performance detected with three-dimensional speckle-tracking strain in patients with chronic right ventricular pacing and preserved ejection fraction. Eur Heart J Cardiovasc Imaging. 2012;13(10):849–56.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang Q, Huang D, Zhang L, Shen D, Ouyang Q, Duan Z, An X, Zhang M, Zhang C, Yang F, Zhi G. Assessment of myocardial infarct size by three-dimensional and two-dimensional speckle tracking echocardiography: a comparative study to single photon emission computed tomography. Echocardiography. 2015;32(10):1539–46. doi: 10.1111/echo.12901. Epub 2015 Feb 15. PubMed PMID: 25684359.CrossRefPubMedGoogle Scholar
  51. 51.
    Nagata Y, Takeuchi M, Wu VC, Izumo M, Suzuki K, Sato K, Seo Y, Akashi YJ, Aonuma K, Otsuji Y. Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction. JACC Cardiovasc Imaging. 2015;8(3):235–45. doi: 10.1016/j.jcmg.2014.12.009. Epub 2015 Feb 11. PubMed PMID: 25682511.CrossRefPubMedGoogle Scholar
  52. 52.
    Casas-Rojo E, Fernández-Golfin C, Moya-Mur JL, González-Gómez A, García-Martín A, Morán-Fernández L, Rodríguez-Muñoz D, Jiménez-Nacher JJ, Martí Sánchez D, Zamorano Gómez JL. Area strain from 3D speckle-tracking echocardiography as an independent predictor of early symptoms or ventricular dysfunction in asymptomatic severe mitral regurgitation with preserved ejection fraction. Int J Cardiovasc Imaging. 2016;9 [Epub ahead of print] PubMed PMID: 27161336.Google Scholar
  53. 53.
    Nemes A, Domsik P, Kalapos A, Lengyel C, Orosz A, Forster T. Comparison of three-dimensional speckle tracking echocardiography and two-dimensional echocardiography for evaluation of left atrial size and function in healthy volunteers (results from the MAGYAR-Healthy study). Echocardiography. 2014;31(7):865–71. doi: 10.1111/echo.12485. Epub 2013 Dec 17. PubMed PMID: 24341394.PubMedGoogle Scholar
  54. 54.
    Smith BC, Dobson G, Dawson D, Charalampopoulos A, Grapsa J, Nihoyannopoulos P. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 2014;64(1):41–51. doi: 10.1016/j.jacc.2014.01.084. PubMed PMID: 24998127.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cardiology DepartmentHospital Ramon y CajalMadridSpain

Personalised recommendations