Advertisement

Distributed Local Search for Elastic Image Matching

  • Hongjian WangEmail author
  • Abdelkhalek Mansouri
  • Jean-Charles Créput
  • Yassine Ruichek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10103)

Abstract

We propose a distributed local search (DLS) algorithm, which is a parallel formulation of a local search procedure in an attempt to follow the spirit of standard local search metaheuristics. Applications of different operators for solution diversification are possible in a similar way to variable neighborhood search. We formulate a general energy function to be equivalent to elastic image matching problems. A specific example application is stereo matching. Experimental results show that the GPU implementation of DLS seems to be the only method that provides an increasing acceleration factor as the instance size augments, among eight tested energy minimization algorithms.

Keywords

Parallel and distributed computing Variable neighborhood search Stereo matching Graphics processing unit 

References

  1. 1.
    Talbi, E.G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, Hoboken (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Van Luong, T., Melab, N., Talbi, E.G.: Gpu computing for parallel local search metaheuristic algorithms. IEEE Trans. Comput. 62, 173–185 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Delévacq, A., Delisle, P., Krajecki, M.: Parallel gpu implementation of iterated local search for the travelling salesman problem. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 372–377. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Fosin, J., Davidović, D., Carić, T.: A gpu implementation of local search operators for symmetric travelling salesman problem. PROMET Traffic Transp. 25, 225–234 (2013)Google Scholar
  5. 5.
    Luong, T., Melab, N., Talbi, E.-G.: GPU-based multi-start local search algorithms. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 321–335. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25566-3_24 CrossRefGoogle Scholar
  6. 6.
    Sánchez-Oro, J., Sevaux, M., Rossi, A., Martí, R., Duarte, A.: Solving dynamic memory allocation problems in embedded systems with parallel variable neighborhood search strategies. Electron. Notes Discrete Math. 47, 85–92 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bengoetxea, E.: Inexact graph matching using estimation of distribution algorithms. Ph.D. thesis, Ecole Nationale Supérieure des Télécommunications, Paris, France (2002)Google Scholar
  8. 8.
    Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1048–1058 (2009)CrossRefGoogle Scholar
  9. 9.
    Keysers, D., Unger, W.: Elastic image matching is np-complete. Pattern Recogn. Lett. 24, 445–453 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Durbin, R., Willshaw, D.: An analogue approach to the travelling salesman problem using an elastic net method. Nature 326, 689–691 (1987)CrossRefGoogle Scholar
  11. 11.
    Créput, J.C., Hajjam, A., Koukam, A., Kuhn, O.: Self-organizing maps in population based metaheuristic to the dynamic vehicle routing problem. J. Comb. Optim. 24, 437–458 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, H.: Cellular matrix for parallel k-means and local search to Euclidean grid matching. Ph.D. thesis, Université de Technologie de Belfort-Montbeliard (2015)Google Scholar
  13. 13.
    Veksler, O.: Efficient graph-based energy minimization methods in computer vision. Ph.D. thesis, Cornell University (1999)Google Scholar
  14. 14.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)CrossRefGoogle Scholar
  15. 15.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1068–1080 (2008)CrossRefGoogle Scholar
  16. 16.
    Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. Ser. B (Methodological) 48(3), 259–302 (1986)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with belief propagation for stereo, using identical mrf parameters. In: 2003 Ninth IEEE International Conference on Computer Vision. IEEE (2003)Google Scholar
  19. 19.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: 2003 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 195–202. IEEE (2003)Google Scholar
  20. 20.
    Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Map estimation via agreement on trees: message-passing and linear programming. IEEE Trans. Inf. Theor. 51, 3697–3717 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hongjian Wang
    • 1
    Email author
  • Abdelkhalek Mansouri
    • 1
  • Jean-Charles Créput
    • 1
  • Yassine Ruichek
    • 1
  1. 1.IRTES-SeTUniversité de Technologie de Belfort-MontbéliardBelfortFrance

Personalised recommendations