Advertisement

A New Method to Synchronize Fractional Chaotic Systems with Different Dimensions

  • Adel Ouannas
  • Toufik Ziar
  • Ahmad Taher Azar
  • Sundarapandian Vaidyanathan
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 688)

Abstract

By using two scaling function matrices, the synchronization problem of different dimensional fractional order chaotic systems in different dimensions is developed in this chapter. The controller is designed to assure that the synchronization of two different dimensional fractional order chaotic systems is achieved using the Lyapunov direct method. Numerical examples and computer simulations are used to validate numerically the proposed synchronization schemes.

Keywords

Fractional order chaotic systems Synchronization Hyperchaotic systems Different dimensional fractional chaotic 

References

  1. 1.
    Hartley, T., Lorenzo, C., & Qammer, H. (1995). Chaos in a fractional order Chua’s system. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42, 485–490.CrossRefGoogle Scholar
  2. 2.
    Arena, P., Caponetto, R., Fortuna, L., & Porto, D. (1998). Bifurcation and chaos in noninteger order cellular neural networks. International Journal of Bifurcation and Chaos, 8, 1527–1539.zbMATHCrossRefGoogle Scholar
  3. 3.
    Ahmad, W. M., & Sprott, J. C. (2003). Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals, 16, 339–351.zbMATHCrossRefGoogle Scholar
  4. 4.
    Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional Lorenz system. Physical Review Letters, 91, 034101.CrossRefGoogle Scholar
  5. 5.
    Li, C., & Chen, G. (2004). Chaos and hyperchaos in fractional order Rössler equations. Physica A, 341, 55–61.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, C., & Chen, G. (2004). Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals, 22, 549–554.zbMATHCrossRefGoogle Scholar
  7. 7.
    Guo, L. J. (2005). Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems. Chinese Physics, 14, 1517–1521.CrossRefGoogle Scholar
  8. 8.
    Lu, J. G. (2005). Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals, 26, 1125–1133.zbMATHCrossRefGoogle Scholar
  9. 9.
    Ahmad, W. M. (2005). Hyperchaos in fractional order nonlinear systems. Chaos Solitons Fractals, 26, 1459–1465.zbMATHCrossRefGoogle Scholar
  10. 10.
    Gao, X., & Yu, J. (2005). Chaos in the fractional order periodically forced complex Duffing’s oscillators. Chaos Solitons Fractals, 24, 1097–1104.zbMATHCrossRefGoogle Scholar
  11. 11.
    Lu, J. G., & Chen, G. (2006). A note on the fractional-order Chen system. Chaos Solitons Fractals, 27, 685–688.zbMATHCrossRefGoogle Scholar
  12. 12.
    Ge, Z. M., & Hsu, M. Y. (2007). Chaos in a generalized van der Pol system and in its fractional order system. Chaos Solitons Fractals, 33, 1711–1745.zbMATHCrossRefGoogle Scholar
  13. 13.
    Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. A. (2007). Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Journal of Mathematical Analysis and Applications, 325, 542–553.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Li, C., & Yan, J. (2007). The synchronization of three fractional differential systems. Chaos Solitons Fractals, 32, 751–757.CrossRefGoogle Scholar
  15. 15.
    Barbosa, R. S., Machado, J. A. T., Vinagre, B. M., & Calderón, A. J. (2007). Analysis of the Van der Pol oscillator containing derivatives of fractional order. Journal of Vibration and Control, 13, 1291–1301.zbMATHCrossRefGoogle Scholar
  16. 16.
    Ge, Z. M., & Ou, C. Y. (2007). Chaos in a fractional order modified Duffing system. Chaos Solitons Fractals, 34, 262–291.zbMATHCrossRefGoogle Scholar
  17. 17.
    Chen, J. H., & Chen, W. C. (2008). Chaotic dynamics of the fractionally damped van der Pol equation. Chaos Solitons Fractals, 35, 188–198.CrossRefGoogle Scholar
  18. 18.
    Chen, W. C. (2008). Nonlinear dynamic and chaos in a fractional-order financial system. Chaos Solitons Fractals, 36, 1305–1314.CrossRefGoogle Scholar
  19. 19.
    Sheu, L. J., Chen, H. K., Chen, J. H., Tam, L. M., Chen, W. C., Lin, K. T., et al. (2008). Chaos in the Newton-Leipnik system with fractional order. Chaos Solitons Fractals, 36, 98–103.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Petráš, I. (2008). A note on the fractional-order Chua’s system. Chaos Solitons Fractals, 38, 140–147.CrossRefGoogle Scholar
  21. 21.
    Petráš, I. (2009). Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dynamics, 57, 157–170.zbMATHCrossRefGoogle Scholar
  22. 22.
    Petráš, I. (2010). A note on the fractional-order Volta’s system. Communications in Nonlinear Science and Numerical Simulation, 15, 384–393.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Deng, H., Li, T., Wang, Q., & Li, H. (2009). A fractional-order hyperchaotic system and its synchronization. Chaos Solitons Fractals, 41, 962–969.zbMATHCrossRefGoogle Scholar
  24. 24.
    Gejji, V. D., & Bhalekar, S. (2010). Chaos in fractional ordered Liu system. Computers & Mathematics with Applications, 59, 1117–1127.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Deng, W. (2007). Short memory principle anda predictor-corrector approach for fractional differential equations. Journal of Computational and Applied Mathematics, 206, 174–188.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kiani, B. A., Fallahi, K., Pariz, N., & Leung, H. (2009). A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Communications in Nonlinear Science and Numerical Simulation, 14, 863–879.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Doye, I. N., Zasadzinski, M., Darouach, M., & Radhy, N. (2009). Observer-based control for fractional-order continuous-time systems. In Proceedings of IEEE Conference on Decision and Control (1932–1937).Google Scholar
  28. 28.
    Deng, Y. S., & Qin, K. Y. (2010). Fractional order Liu-system synchronization and its application in multimedia security. ICCCAS, 23, 769–772.MathSciNetGoogle Scholar
  29. 29.
    Sheu, L. J., Chen, W. C., Chen, Y. C., & Weng, W. T. (2010). A two-channel secure communication using fractional chaotic systems. In International Conference on Computer, Electrical, and Systems Science, and Engineering, Tokyo.Google Scholar
  30. 30.
    Sheu, L. J. (2011). A speech encryption using fractional chaotic systems. Nonlinear Dynamics, 65, 103–108.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Cao, H. F., & Zhang, R. X. (2012). Parameter modulation digital communication and its circuit implementation using fractional-order chaotic system via a single driving variable. Acta Physica Sinica, 61, 123–130.Google Scholar
  32. 32.
    Boroujeni, E. A., & Momeni, H. R. (2012). Observer based control of aclass of nonlinear fractional-order systems using LMI. International Journal of Science and Engineering Investigations, 1, 48–52.Google Scholar
  33. 33.
    Zhao, J. F., Wang, S. H., Chang, Y. X., & Li, X. F. (2015). A novel image encryption scheme based on an improper fractional-order chaotic system. Nonlinear Dynamics, 80, 1721–1729.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Chao, L. (2015). Asynchronous error-correcting secure communication scheme based on fractional-order shifting chaotic system. International Journal of Modern Physics C, 26, 1550065-19.Google Scholar
  35. 35.
    Huang, L., Shi, D., & Gao, J. (2016). The design and its application in secure communication and image encryption of a New Lorenz-like system with varying parameter. Mathematical Problems in Engineering, 1–11.Google Scholar
  36. 36.
    Yamada, T., & Fujisaka, H. (1983). Stability theory of synchroized motion in coupled-oscillator systems. Progress of Theoretical Physics, 70, 1240–1248.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64, 821–827.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Carroll, T. L., & Pecora, L. M. (1991). Synchronizing a chaotic systems. IEEE Transactions on Circuits and Systems, 38, 453–456.CrossRefGoogle Scholar
  39. 39.
    Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization an universal concept in nonlinear sciences. Cambridge University Press.Google Scholar
  40. 40.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366, 1–101.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Aziz-Alaoui, M. A. (2006). Synchronization of chaos. Encyclopedia of Mathematical Physics, 5, 213–226.zbMATHGoogle Scholar
  42. 42.
    Luo, A. (2009). A theory for synchronization of dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 14, 1901–1951.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Vaidyanathan, S., & Azar, A. T. (2015). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in Computational Intelligence Book Series. Springer.Google Scholar
  44. 44.
    Vaidyanathan, S., & Azar, A. T. (2015). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence Book Series. Springer.Google Scholar
  45. 45.
    Vaidyanathan, S., & Azar, A. T. (2015). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in Computational Intelligence Book Series. Springer.Google Scholar
  46. 46.
    Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015). Backstepping controller design for the global chaos synchronization of Sprott’s Jerk systems. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in Computational Intelligence Book Series. Springer.Google Scholar
  47. 47.
    Vaidyanathan, S., Sampath, S., & Azar, A. T. (2015). Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. International Journal of Modelling, Identification and Control (IJMIC), 23(1), 92–100.Google Scholar
  48. 48.
    Vaidyanathan, S., Azar, A. T., Rajagopal, K., Alexander, P., & (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronization via active control. International Journal of Modelling Identification and Control (IJMIC), 23(3), 267–277.Google Scholar
  49. 49.
    Vaidyanathan, S., & Azar, A. T. (2016). Takagi-Sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system. International Journal of Intelligent Engineering Informatics, 4(2), 135–150.CrossRefGoogle Scholar
  50. 50.
    Vaidyanathan, S., & Azar, A. T. (2015). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in Computational Intelligence (Vol. 581, pp. 19–38). Berlin/Heidelberg: Springer-Verlag GmbH. doi: 10.1007/978-3-319-13132-0_2.
  51. 51.
    Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.Google Scholar
  52. 52.
    Boulkroune, A., Hamel, S., & Azar, A. T. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.Google Scholar
  53. 53.
    Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.Google Scholar
  54. 54.
    Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-d hyperchaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.Google Scholar
  55. 55.
    Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.Google Scholar
  56. 56.
    Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.Google Scholar
  57. 57.
    Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-D Jerk system with an exponential nonlinearity. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.Google Scholar
  58. 58.
    Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer.Google Scholar
  59. 59.
    Ouannas, A. (2014). Chaos synchronization approach based on new criterion of stability. Nonlinear Dynamics and Systems Theory, 14, 396–402.MathSciNetzbMATHGoogle Scholar
  60. 60.
    Ouannas, A. (2014). On full state hybrid projective synchronization of general discrete chaotic systems. Journal of Nonlinear Dynamics, 1–6.Google Scholar
  61. 61.
    Ouannas, A. (2014). Some synchronization criteria for N-dimensional chaotic systems in discrete-time. Journal of Advanced Research in Applied Mathematics, 6, 1–10.MathSciNetCrossRefGoogle Scholar
  62. 62.
    Ouannas, A. (2014). On inverse full state hybrid projective synchronization of chaotic dynamical systems in discrete-time. International Journal of Dynamics and Control, 1–7.Google Scholar
  63. 63.
    Ouannas, A. (2015). Synchronization criterion for a class of N-dimensional discrete chaotic systems. Journal of Advanced Research in Dynamical and Control Systems, 7, 82–89.MathSciNetGoogle Scholar
  64. 64.
    Ouannas, A. (2015). A new synchronization scheme for general 3D quadratic chaotic systems in discrete-time. Nonlinear Dynamics and Systems Theory, 15, 163–170.MathSciNetzbMATHGoogle Scholar
  65. 65.
    Ouannas, A., Odibat, Z., & Shawagfeh, N. (2016). A new Q–S Synchronization results for discrete chaotic systems. Differential Equations and Dynamical Systems, 1–10.Google Scholar
  66. 66.
    Ouannas, A. (2016). Co-existence of various synchronization-types in hyperchaotic maps. Nonlinear Dynamics and Systems Theory, 16, 312–321.MathSciNetGoogle Scholar
  67. 67.
    Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016). A new type of hybrid synchronization between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cybernetics, 1–8.Google Scholar
  68. 68.
    Li, C. G., Liao, X. F., & Yu, J. B. (2003). Synchronization of fractional order chaotic systems. Physical Review E, 68, 067203.CrossRefGoogle Scholar
  69. 69.
    Gao, X., & Yu, J. B. (2005). Synchronization of two coupled fractional-order chaotic oscillators. Chaos Solitons Fractals, 26, 141–145.zbMATHCrossRefGoogle Scholar
  70. 70.
    Deng, W. H., & Li, C. P. (2005). Chaos synchronization of the fractional Lü system. Physica A, 353, 61–72.CrossRefGoogle Scholar
  71. 71.
    Li, C., & Zhou, T. (2005). Synchronization in fractional-order differential systems. Physica D, 212, 111–125.MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Zhou, S., Li, H., Zhu, Z., & Li, C. (2008). Chaos control and synchronization in a fractional neuron network system. Chaos Solitons Fractals, 36, 973–984.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Peng, G. (2007). Synchronization of fractional order chaotic systems. Physics Letters A, 363, 426–432.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Sheu, L. J., Chen, H. K., Chen, J. H., & Tam, L. M. (2007). Chaos in a new system with fractional order. Chaos Solitons Fractals, 31, 1203–1212.CrossRefGoogle Scholar
  75. 75.
    Yan, J., & Li, C. (2007). On chaos synchronization of fractional differential equations. Chaos Solitons Fractals, 32, 725–735.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Wang, J., Xiong, X., & Zhang, Y. (2006). Extending synchronization scheme to chaotic fractional-order Chen systems. Physica A, 370, 279–285.CrossRefGoogle Scholar
  77. 77.
    Li, C. P., Deng, W. H., & Xu, D. (2006). Chaos synchronization of the Chua system with a fractional order. Physica A, 360, 171–185.MathSciNetCrossRefGoogle Scholar
  78. 78.
    Zhu, H., Zhou, S., & Zhang, J. (2009). Chaos and synchronization of the fractional-order Chua’s system. Chaos Solitons Fractals, 39, 1595–1603.zbMATHCrossRefGoogle Scholar
  79. 79.
    Zhang, F., Chen, G., Li, C., & Kurths, J. (2013). Chaos synchronization in fractional differential systems. Philosophical Transactions of the Royal Society A, 371, 1–26.MathSciNetzbMATHGoogle Scholar
  80. 80.
    Ansari, M. A., Arora, D., & Ansari, S. P. (2016). Chaos control and synchronization of fractional order delay-varying computer virus propagation model. Mathematical Methods in the Applied Sciences, 39, 1197–1205.MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Liang, H., Wang, Z., Yue, Z., & Lu, R. (2012). Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika, 48, 190–205.MathSciNetzbMATHGoogle Scholar
  82. 82.
    Wu, X., Wang, H., & Lu, H. (2012). Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Analysis: Real World Applications, 13, 1441–1450Google Scholar
  83. 83.
    Muthukumar, P., & Balasubramaniam, P. (2013). Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dynamics, 74, 1169–1181.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Muthukumar, P., Balasubramaniam, P., & Ratnavelu, K. (2014). Synchronization of a novel fractional order stretch-twistfold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dynamics, 77, 1547–1559.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Chen, L., Wu, R., He, Y., & Chai, Y. (2015). Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dynamics, 80, 51–58.MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Liu, L., Ding, W., Liu, C., Ji, H., & Cao, C. (2014). Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dynamics, 76, 2059–2071.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Zhang, L., & Yan, Y. (2014). Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dynamics, 76, 1761–1767.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Odibat, Z., Corson, N., Alaoui, M. A. A., & Bertelle, C. (2010). Synchronization of chaotic fractional-order systems via linear control. International Journal of Bifurcation and Chaos, 20, 81–97.MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Chen, X. R., & Liu, C. X. (2012). Chaos synchronization of fractional order unified chaotic system via nonlinear control. International Journal of Modern Physics B, 25, 407–415.zbMATHCrossRefGoogle Scholar
  90. 90.
    Srivastava, M., Ansari, S. P., Agrawal, S. K., Das, S., & Leung, A. Y. T. (2014). Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dynamics, 76, 905–914.MathSciNetCrossRefGoogle Scholar
  91. 91.
    Agrawal, S. K., & Das, S. (2012). Amodified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dynamics, 73, 907–919.zbMATHCrossRefGoogle Scholar
  92. 92.
    Yuan, W. X., & Mei, S. J. (2009). Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Communications in Nonlinear Science and Numerical Simulation, 14, 3351–3357.zbMATHCrossRefGoogle Scholar
  93. 93.
    Odibat, Z. (2010). Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dynamics, 60, 479–487.MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Zhou, P., & Bai, R. (2015). The adaptive synchronization of fractional-order chaotic system with fractional-order \(1<q <2\) via linear parameter update law. Nonlinear Dynamics, 80, 753–765.Google Scholar
  95. 95.
    Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design. Studies in Computational Intelligence (Vol. 581). Germany: Springer. ISBN 978-3-319-13131-3.Google Scholar
  96. 96.
    Azar, A. T., & Vaidyanathan, S. (2015). Advances in chaos theory and intelligent control. Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer. ISBN 978-3-319-30338-3.Google Scholar
  97. 97.
    Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Studies in Computational Intelligence (Vol. 575). Germany: Springer. ISBN 978-3-319-11016-5.Google Scholar
  98. 98.
    Azar, A. T., & Vaidyanathan, S. (2015). Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) Book Series. USA: IGI Global. ISBN 9781466672482.Google Scholar
  99. 99.
    Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in Fuzziness and Soft Computing (Vol. 319). Germany: Springer. ISBN 978-3-319-12882-5.Google Scholar
  100. 100.
    Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in Computational Intelligence (Vol. 576). Germany: Springer. ISBN 978-3-319-11172-8.Google Scholar
  101. 101.
    Cafagna, D., & Grassi, G. (2012). Observer-based projective synchronization of fractional systems via a scalar signal: Application to hyperchaotic Rössler systems. Nonlinear Dynamics, 68, 117–128.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Odibat, Z. M. (2012). A note on phase synchronization in coupled chaotic fractional order systems. Nonlinear Analysis: Real World Applications, 13, 779–789.MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Chen, F., Xia, L., & Li, C. G. (2012). Wavelet phase synchronization of fractional-order chaotic systems. Chinese Physics Letters, 29, 070501-6.Google Scholar
  104. 104.
    Razminiaa, A., & Baleanu, D. (2013). Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics, 23, 873–879.CrossRefGoogle Scholar
  105. 105.
    Al-sawalha, M. M., Alomari, A. K., Goh, S. M., & Nooran, M. S. M. (2011). Active anti-synchronization of two identical and different fractional-order chaotic systems. International Journal of Nonlinear Science, 11, 267–274.MathSciNetzbMATHGoogle Scholar
  106. 106.
    Li, C. G. (2006). Projective synchronization in fractional order chaotic systems and its control. Progress of Theoretical Physics, 115, 661–666.CrossRefGoogle Scholar
  107. 107.
    Shao, S. Q., Gao, X., & Liu, X. W. (2007). Projective synchronization in coupled fractional order chaotic Rössler system and its control. Chinese Physics, 16, 2612–2615.CrossRefGoogle Scholar
  108. 108.
    Wang, X. Y., & He, Y. J. (2008). Projective synchronization of fractional order chaotic system based on linear separation. Physics Letters A, 372, 435–441.zbMATHCrossRefGoogle Scholar
  109. 109.
    Agrawal, S. K., & Das, S. (2014). Projective synchronization between different fractional-order hyperchaotic systems with uncertain parameters using proposed modified adaptive projective synchronization technique. Mathematical Methods in the Applied Sciences, 37, 2164–2176.MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Chang, C. M., & Chen, H. K. (2010). Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems. Nonlinear Dynamics, 62, 851–858.MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Wang, S., Yu, Y. G., & Diao, M. (2010). Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Physica A, 389, 4981–4988.CrossRefGoogle Scholar
  112. 112.
    Zhou, P., & Zhu, W. (2011). Function projective synchronization for fractional-order chaotic systems. Nonlinear Analysis: Real World Applications, 12, 811–816.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Zhou, P., & Cao, Y. X. (2010). Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems. Chinese Physics B, 19, 100507.CrossRefGoogle Scholar
  114. 114.
    Xi, H., Li, Y., & Huang, X. (2015). Adaptive function projective combination synchronization of three different fractional-order chaotic systems. Optik, 126, 5346–5349.CrossRefGoogle Scholar
  115. 115.
    Peng, G. J., Jiang, Y. L., & Chen, F. (2008). Generalized projective synchronization of fractional order chaotic systems. Physica A, 387, 3738–3746.CrossRefGoogle Scholar
  116. 116.
    Shao, S. Q. (2009). Controlling general projective synchronization of fractional order Rössler systems. Chaos Solitons Fractals, 39, 1572–1577.zbMATHCrossRefGoogle Scholar
  117. 117.
    Wu, X. J., & Lu, Y. (2009). Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dynamics, 57, 25–35.zbMATHCrossRefGoogle Scholar
  118. 118.
    Zhou, P., Kuang, F., & Cheng, Y. M. (2010). Generalized projective synchronization for fractional order chaotic systems. Chinese Journal of Physics, 48, 49–56.MathSciNetGoogle Scholar
  119. 119.
    Deng, W. H. (2007). Generalized synchronization in fractional order systems. Physical Review E, 75, 056201.CrossRefGoogle Scholar
  120. 120.
    Zhou, P., Cheng, X. F., & Zhang, N. Y. (2008). Generalized synchronization between different fractional-order chaotic systems. Communications in Theoretical Physics, 50, 931–934.CrossRefGoogle Scholar
  121. 121.
    Zhang, X. D., Zhao, P. D., & Li, A. H. (2010). Construction of a new fractional chaotic system and generalized synchronization. Communications in Theoretical Physics, 53, 1105–1110.zbMATHCrossRefGoogle Scholar
  122. 122.
    Jun, W. M., & Yuan, W. X. (2011). Generalized synchronization of fractional order chaotic systems. International Journal of Modern Physics B, 25, 1283–1292.zbMATHCrossRefGoogle Scholar
  123. 123.
    Wu, X. J., Lai, D. R., & Lu, H. T. (2012). Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlinear Dynamics, 69, 667–683.MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Xiao, W., Fu, J., Liu, Z., & Wan, W. (2012). Generalized synchronization of typical fractional order chaos system. Journal of Computers, 7, 1519–1526.Google Scholar
  125. 125.
    Martínez-Guerra, R., & Mata-Machuca, J. L. (2014). Fractional generalized synchronization in a class of nonlinear fractional order systems. Nonlinear Dynamics, 77, 1237–1244.MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Razminia, A. (2013). Full state hybrid projective synchronization of a novel incommensurate fractional order hyperchaotic system using adaptive mechanism. Indian Journal of Physics, 87(2), 161–167.CrossRefGoogle Scholar
  127. 127.
    Yi, C., Liping, C., Ranchao, W., & Juan, D. (2013). Q-S synchronization of the fractional-order unified system. Pramana, 80, 449–461.CrossRefGoogle Scholar
  128. 128.
    Mathiyalagan, K., Park, J. H., & Sakthivel, R. (2015). Exponential synchronization for fractional-order chaotic systems with mixed uncertainties. Complexity, 21, 114–125.MathSciNetCrossRefGoogle Scholar
  129. 129.
    Aghababa, M. P. (2012). Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 69, 247–261.MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    Li, D., Zhang, X. P., Hu, Y. T., & Yang, Y. Y. (2015). Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing, 167, 165–171.CrossRefGoogle Scholar
  131. 131.
    Xi, H., Yu, S., Zhang, R., & Xu, L. (2014). Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems. Optik, 125, 2036–2040.CrossRefGoogle Scholar
  132. 132.
    Ouannas, A., & Abu-Saris, R. (2016). On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems. Journal of Chaos, 1–7.Google Scholar
  133. 133.
    Ouannas, A., & Grassi, G. (2016). Inverse full state hybrid projective synchronization for chaotic maps with different dimensions. Chinese Physics B, 25, 090503-6.Google Scholar
  134. 134.
    Ouannas, A., & Odibat, Z. (2015). Generalized synchronization of different dimensional chaotic dynamical systems in discrete-time. Nonlinear Dynamics, 81, 765–771.MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Ouannas, A. (2016). On inverse generalized synchronization of continuous chaotic dynamical systems. International Journal of Applied and Computational Mathematics, 2, 1–11.MathSciNetCrossRefGoogle Scholar
  136. 136.
    Ouannas, A., & Al-sawalha, M. M. (2016). On \(\Lambda -\phi \) generalized synchronization of chaotic dynamical systems in continuous-time. European Physical Journal Special Topics, 225, 187–196.CrossRefGoogle Scholar
  137. 137.
    Ouannas, A. (2015). A new generalized-type of synchronization for discrete-time chaotic dynamical systems. Journal of Computational and Nonlinear Dynamics, 10, 061019-5.Google Scholar
  138. 138.
    Ouannas, A., & Abu-Saris, R. (2015). A robust control method for Q-S synchronization between different dimensional integer-order and fractional-order chaotic systems. Journal of Control Science and Engineering, 1–7.Google Scholar
  139. 139.
    Ouannas, A., & Grassi, G. (2016). A new approach to study co-existence of some synchronization types between chaotic maps with different dimensions. Nonlinear Dynamics.Google Scholar
  140. 140.
    Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences, 1–9.Google Scholar
  141. 141.
    Ouannas, A., & Al-sawalha, M. M. (2015). A new approach to synchronize different dimensional chaotic maps using two scaling matrices. Nonlinear Dynamics and Systems Theory, 15, 400–408.MathSciNetzbMATHGoogle Scholar
  142. 142.
    Ouannas, A., & Al-sawalha, M. M. (2015). Synchronization between different dimensional chaotic systems using two scaling matrices. Optik, 127, 959–963.zbMATHCrossRefGoogle Scholar
  143. 143.
    Ouannas, A., Al-sawalha, M. M., & Ziar, T. (2016). Fractional chaos synchronization schemes for different dimensional systems with non-identical fractional-orders via two scaling matrices. Optik, 127, 8410–8418.CrossRefGoogle Scholar
  144. 144.
    Caputo, M. (1967). Linear models of dissipation whose \(Q\) is almost frequency independent. II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.CrossRefGoogle Scholar
  145. 145.
    Samko, S. G., Klibas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives: Theory and applications. Gordan and Breach.Google Scholar
  146. 146.
    Podlubny, I. (1999). Fractional differential equations. Academic Press.Google Scholar
  147. 147.
    Si, G., Sun, Z., Zhang, Y., & Chen, W. (2012). Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Analysis: Real World Applications, 13, 1761–1771.Google Scholar
  148. 148.
    Liu, C., Liu, T., Liu, L., & Liu, K. (2004). A new chaotic attractor. Chaos Solitons Fractals, 22, 1031–1038.MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    Wang, Z., Huang, X., Li, Y.-X., & Song, X. N. (2013). A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chinese Physics B, 22, 010504-7.Google Scholar
  150. 150.
    Petráš, I. (2011). Fractional-order nonlinear systems: Modeling, analysis and simulation. Springer.Google Scholar
  151. 151.
    Wang, X.-Y., Zhang, Y.-L., Lin, D., & Zhang, N. (2011). Impulsive synchronisation of a class of fractional-order hyperchaotic systems. Chinese Physics B, 20, 030506-7.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Adel Ouannas
    • 1
  • Toufik Ziar
    • 2
  • Ahmad Taher Azar
    • 3
    • 4
  • Sundarapandian Vaidyanathan
    • 5
  1. 1.Laboratory of Mathematics, Informatics and Systems (LAMIS)University of Larbi TebessiTébessaAlgeria
  2. 2.Department of Material SciencesUniversity of TebessaTébessaAlgeria
  3. 3.Faculty of Computers and InformationBenha UniversityBanhaEgypt
  4. 4.Nanoelectronics Integrated Systems Center (NISC), Nile UniversityCairoEgypt
  5. 5.Research and Development Centre, Vel Tech University AvadiChennaiIndia

Personalised recommendations