Skip to main content

A Three-Dimensional No-Equilibrium Chaotic System: Analysis, Synchronization and Its Fractional Order Form

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 688))

Abstract

Recently, a new classification of nonlinear dynamics has been introduced by Leonov and Kuznetsov, in which two kinds of attractors are concentrated, i.e. self-excited and hidden ones. Self-excited attractor has a basin of attraction excited from unstable equilibria. So, from that point of view, most known systems, like Lorenz’s system, Rössler’s system, Chen’s system, or Sprott’s system, belong to chaotic systems with self-excited attractors. In contrast, a few unusual systems such as those with a line equilibrium, with stable equilibria, or without equilibrium, are classified into chaotic systems with hidden attractor. Studying chaotic system with hidden attractors has become an attractive research direction because hidden attractors play an important role in theoretical problems and engineering applications. This chapter presents a three-dimensional autonomous system without any equilibrium point which can generate hidden chaotic attractor. The fundamental dynamics properties of such no-equilibrium system are discovered by using phase portraits, Lyapunov exponents, bifurcation diagram, and Kaplan–Yorke dimension. Chaos synchronization of proposed systems is achieved and confirmed by numerical simulation. In addition, an electronic circuit is implemented to evaluate the theoretical model. Finally, fractional-order form of the system with no equilibrium is also investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguilar-Lopez, R., Martinez-Guerra, R., & Perez-Pinacho, C. (2014). Nonlinear observer for synchronization of chaotic systems with application to secure data transmission. European Physics Journal Special Topics, 223, 1541–1548.

    Article  Google Scholar 

  2. Akgul, A., Moroz, I., Pehlivan, I., & Vaidyanathan, S. (2016). A new four-scroll chaotic attractor and its enginearing applications. Optik, 127, 5491–5499.

    Article  Google Scholar 

  3. Akopov, A., Astakhov, V., Vadiasova, T., Shabunin, A., & Kapitaniak, T. (2005). Frequency synchronization in clusters in coupled extended systems. Physics Letters A, 334, 169–172.

    Article  MATH  Google Scholar 

  4. Arneodo, A., Coullet, P., & Tresser, C. (1981). Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79, 573–579.

    Article  MathSciNet  MATH  Google Scholar 

  5. Azar, A. T., & Vaidyanathan, S. (2015a). Chaos modeling and control systems design. Germany: Springer.

    Book  MATH  Google Scholar 

  6. Azar, A. T., & Vaidyanathan, S. (2015b). Computational intelligence applications in modeling and control. Germany: Springer.

    Book  Google Scholar 

  7. Azar, A. T., & Vaidyanathan, S. (2015c). Handbook of research on advanced intelligent control engineering and automation. USA: IGI Global.

    Book  Google Scholar 

  8. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Germany: Springer.

    Book  MATH  Google Scholar 

  9. Bagley, R. L., & Calico, R. A. (1991). Fractional-order state equations for the control of visco-elastically damped structers. Journal of Guidance, Control, and Dyanmics, 14, 304–311.

    Article  Google Scholar 

  10. Barakat, M., Mansingka, A., Radwan, A. G., & Salama, K. N. (2013). Generalized hardware post processing technique for chaos-based pseudorandom number generators. ETRI Journal, 35, 448–458.

    Article  Google Scholar 

  11. Barnerjee, T., Biswas, D., & Sarkar, B. C. (2012). Design and analysis of a first order time-delayed chaotic system. Nonlinear Dynamics, 70, 721–734.

    Article  MathSciNet  Google Scholar 

  12. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366, 1–101.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bouali, S., Buscarino, A., Fortuna, L., Frasca, M., & Gambuzza, L. V. (2012). Emulating complex business cycles by using an electronic analogue. Nonlinear Analysis: Real World Applications, 13, 2459–2465.

    Google Scholar 

  14. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016a). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 681–697). Germany: Springer.

    Google Scholar 

  15. Boulkroune, A., Hamel, S., & Azar, A. T. (2016b). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control Studies in fuzziness and soft computing (Vol. 337, pp. 699–718). Germany: Springer.

    Google Scholar 

  16. Brezetskyi, S., Dudkowski, D., & Kapitaniak, T. (2015). Rare and hidden attractors in van der pol-duffing oscillators. European Physics Journal Special Topics, 224, 1459–1467.

    Article  Google Scholar 

  17. Buscarino, A., Fortuna, L., & Frasca, M. (2009). Experimental robust synchronization of hyperchaotic circuits. Physica D, 238, 1917–1922.

    Article  MATH  Google Scholar 

  18. Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9, 1465–1466.

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, G., & Yu, X. (2003). Chaos control: theory and applications. Berlin: Springer.

    Book  MATH  Google Scholar 

  20. Diethelm, K., Ford, N. J., & Freed, A. D. (2002). A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 29, 3–22.

    Article  MathSciNet  MATH  Google Scholar 

  21. Fortuna, L., & Frasca, M. (2007). Experimental synchronization of single-transistor-based chaotic circuits. Chaos, 17, 043118-1–5.

    Article  MATH  Google Scholar 

  22. Fortuna, L., Frasca, M., & Xibilia, M. G. (2009). Chua’s circuit implementation: Yesterday. World Scientific, Singapore: Today and Tomorrow.

    Book  Google Scholar 

  23. Frederickson, P., Kaplan, J. L., Yorke, E. D., & York, J. (1983). The lyapunov dimension of strange attractors. Journal of Differential Equations, 49, 185–207.

    Article  MathSciNet  MATH  Google Scholar 

  24. Gamez-Guzman, L., Cruz-Hernandez, C., Lopez-Gutierrez, R., & Garcia-Guerrero, E. E. (2009). Synchronization of chua’s circuits with multi-scroll attractors: Application to communication. Communications in Nonlinear Science and Numerical Simulation, 14, 2765–2775.

    Article  Google Scholar 

  25. Gejji, D., & Jafari, H. (2005). Adomian decomposition: A tool for solving a system of fractional differential equations. Journal of Mathematical Analysis and Applications, 301, 508–518.

    Google Scholar 

  26. Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional-order lorenz system. Physics Review Letters, 91, 034101.

    Article  Google Scholar 

  27. Han, F., Hu, J., Yu, X., & Wang, Y. (2007). Fingerprint images encryption via multi-scroll chaotic attractors. Applied Mathematics and Computing, 185, 931–939.

    MATH  Google Scholar 

  28. Hartley, T. T., Lorenzo, C. F., & Qammer, H. K. (1995). Chaos on a fractional Chua’s system. IEEE Transactions on Circuits System I: Fundamental Theory and Applications, 42, 485–490.

    Article  Google Scholar 

  29. Heaviside, O. (1971). Electromagnetic theory. New York, USA: Academic Press.

    MATH  Google Scholar 

  30. Hoang, T. M., & Nakagawa, M. (2007). Anticipating and projective–anticipating synchronization of coupled multidelay feedback systems. Physics Letters A, 365, 407–411.

    Google Scholar 

  31. Hoang, T. M., & Nakagawa, M. (2008). A secure communication system using projective-lag and/or projective-anticipating synchronizations of coupled multidelay feedback systems. Chaos, Solitons & Fractals, 38, 1423–1438.

    Article  Google Scholar 

  32. Huang, Y., Wang, Y., Chen, H., & Zhang, S. (2016). Shape synchronization control for three-dimensional chaotic systems. Chaos, Solitons & Fractals, 87, 136–145.

    Article  MathSciNet  MATH  Google Scholar 

  33. Jafari, S., & Sprott, J. C. (2013). Simple chaotic flows with a line equilibrium. Chaos, Solitons & Fractals, 57, 79–84.

    Article  MathSciNet  MATH  Google Scholar 

  34. Jafari, S., Sprott, J. C., & Golpayegani, S. M. R. H. (2013). Elementary quadratic chaotic flows with no equilibria. Physics Letters A, 377, 699–702.

    Article  MathSciNet  Google Scholar 

  35. Jafari, S., Sprott, J. C., & Nazarimehr, F. (2015). Recent new examples of hidden attractors. European Physics Journal Special Topics, 224, 1469–1476.

    Article  Google Scholar 

  36. Jenson, V. G., & Jeffreys, G. V. (1997). Mathematical methods in chemical enginerring. New York, USA: Academic Press.

    MATH  Google Scholar 

  37. Kajbaf, A., Akhaee, M. A., & Sheikhan, M. (2016). Fast synchronization of non-identical chaotic modulation-based secure systems using a modified sliding mode controller. Chaos, Solitons & Fractals, 84, 49–57.

    Article  MATH  Google Scholar 

  38. Kapitaniak, T. (1994). Synchronization of chaos using continuous control. Physical Review E, 50, 1642–1644.

    Article  Google Scholar 

  39. Karthikeyan, R., & Vaidyanathan, S. (2014). Hybrid chaos synchronization of four-scroll systems via active control. Journal of Electrical Engineering, 65, 97–103.

    Article  Google Scholar 

  40. Khalil, H. (2002). Nonlinear systems. New Jersey, USA: Prentice Hall.

    MATH  Google Scholar 

  41. Kuznetsov, N. V., Leonov, G. A., & Seledzhi, S. M. (2011). Hidden oscillations in nonlinear control systems. IFAC Proceedings, 18, 2506–2510.

    Google Scholar 

  42. Leonov, G. A., & Kuznetsov, N. V. (2011a). Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems. Doklady Mathematics, 84, 475–481.

    Google Scholar 

  43. Leonov, G. A., & Kuznetsov, N. V. (2011b). Analytical–numerical methods for investigation of hidden oscillations in nonlinear control systems. IFAC Proceedings, 18, 2494–2505.

    Google Scholar 

  44. Leonov, G. A., & Kuznetsov, N. V. (2013). Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. International Journal of Bifurcation and Chaos, 23, 1330002.

    Article  MathSciNet  MATH  Google Scholar 

  45. Leonov, G. A., Kuznetsov, N. V., Kiseleva, M. A., Solovyeva, E. P., & Zaretskiy, A. M. (2014). Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dynamics, 77, 277–288.

    Article  Google Scholar 

  46. Leonov, G. A., Kuznetsov, N. V., Kuznetsova, O. A., Seldedzhi, S. M., & Vagaitsev, V. I. (2011a). Hidden oscillations in dynamical systems. Transactions on Systems and Control, 6, 54–67.

    Google Scholar 

  47. Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2011b). Localization of hidden Chua’s attractors. Physics Lett. A, 375, 2230–2233.

    Google Scholar 

  48. Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2012). Hidden attractor in smooth Chua system. Physica D, 241, 1482–1486.

    Google Scholar 

  49. Li, C. P., & Peng, G. J. (2004). Chaos in Chen’s system with a fractional-order. Chaos, Solitons & Fractals, 20, 443–450.

    Article  MathSciNet  MATH  Google Scholar 

  50. Lorenz, E. N. (1963). Deterministic non-periodic flow. Journal of Atmospheric Science, 20, 130–141.

    Article  Google Scholar 

  51. Lü, J., & Chen, G. (2002). A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12, 659–661.

    Article  MathSciNet  MATH  Google Scholar 

  52. Ojoniyi, O. S., & Njah, A. N. (2016). A 5D hyperchaotic Sprott B system with coexisting hidden attractor. Chaos, Solitons & Fractals, 87, 172–181.

    Article  MathSciNet  MATH  Google Scholar 

  53. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic signals. Physics Review A, 64, 821–824.

    MATH  Google Scholar 

  54. Pham, V.-T., Jafari, S., Volos, C., Wang, X., & Golpayegani, S. M. R. H. (2014a). Is that really hidden? The presence of complex fixed-points in chaotic flows with no equilibria. International Journal of Bifurcation and Chaos, 24, 1450146.

    Article  MATH  Google Scholar 

  55. Pham, V.-T., Vaidyanathan, S., Volos, C. K., Hoang, T. M., & Yem, V. V. (2016). Dynamics, synchronization and SPICE implementation of a memristive system with hidden hyperchaotic attractor. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 35–52). Germany: Springer.

    Google Scholar 

  56. Pham, V. T., Vaidyanathan, S., Volos, C. K., & Jafari, S. (2015a). Hidden attractors in a chaotic system with an exponential nonlinear term. European Physics Journal Special Topics, 224, 1507–1517.

    Article  Google Scholar 

  57. Pham, V.-T., Volos, C., & Gambuzza, L. V. (2014). A memristive hyperchaotic system without equilibrium. Scientific World Journal, 2014, 368986.

    Article  Google Scholar 

  58. Pham, V.-T., Volos, C., & Vaidyanathan, S. (2015b). Multi-scroll chaotic oscillator based on a first-order delay differential equation. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modelling and control systems design Studies in Computational Intelligence (Vol. 581, pp. 59–72). Germany: Springer.

    Google Scholar 

  59. Pham, V.-T., Volos, C. K., Jafari, S., Wei, Z., & Wang, X. (2014c). Constructing a novel no-equilibrium chaotic system. International Journal of Bifurcation and Chaos, 24, 1450073.

    Article  MathSciNet  MATH  Google Scholar 

  60. Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1997). From phase to lag synchronization in coupled chaotic oscillators. Physics Review Letters, 78, 4193–4196.

    Article  MATH  Google Scholar 

  61. Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57, 397–398.

    Article  Google Scholar 

  62. Sadoudi, S., Tanougast, C., Azzaz, M. S., & Dandache, A. (2013). Design and FPGA implementation of a wireless hyperchaotic communication system for secure realtime image transmission. EURASIP Journal of Image and Video Processing, 943, 1–18.

    Google Scholar 

  63. Sastry, S. (1999). Nonlinear systems: Analysis, stability, and control. USA: Springer.

    Book  MATH  Google Scholar 

  64. Shahzad, M., Pham, V. T., Ahmad, M. A., Jafari, S., & Hadaeghi, F. (2015). Synchronization and circuit design of a chaotic system with coexisting hidden attractors. European Physics Journal Special Topics, 224, 1637–1652.

    Article  Google Scholar 

  65. Sharma, P. R., Shrimali, M. D., Prasad, A., Kuznetsov, N. V., & Leonov, G. A. (2015). Control of multistability in hidden attractors. European Physics Journal Special Topics, 224, 1485–1491.

    Google Scholar 

  66. Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V., & Chua, L. O. (1998). Methods of qualitative theory in nonlinear dynamics. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  67. Sprott, J. C. (2003). Chaos and times-series analysis. Oxford: Oxford University Press.

    MATH  Google Scholar 

  68. Sprott, J. C. (2010). Elegant chaos: Algebraically simple chaotic flows. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  69. Sprott, J. C. (2015). Strange attractors with various equilibrium types. European Physics Journal Special Topics, 224, 1409–1419.

    Article  Google Scholar 

  70. Srinivasan, K., Senthilkumar, D. V., Murali, K., Lakshmanan, M., & Kurths, J. (2011). Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity. Chaos, 21, 023119.

    Article  MATH  Google Scholar 

  71. Stefanski, A., Perlikowski, P., & Kapitaniak, T. (2007). Ragged synchronizability of coupled oscillators. Physics Review E, 75, 016210.

    Article  MathSciNet  Google Scholar 

  72. Strogatz, S. H. (1994). Nonlinear Dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Massachusetts: Perseus Books.

    MATH  Google Scholar 

  73. Sun, H. H., Abdelwahad, A. A., & Onaral, B. (1894). Linear approximation of transfer function with a pole of fractional-order. IEEE Transactions on Automatic Control, 29, 441–444.

    Article  Google Scholar 

  74. Sundarapandian, V., & Pehlivan, I. (2012). Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathematical Computational Modelling, 55, 1904–1915.

    Article  MathSciNet  MATH  Google Scholar 

  75. Tacha, O. I., Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., Vaidyanathan, S., & Pham, V. T. (2016). Analysis, adaptive control and circuit simulatio of a novel nonlineaar finance system. Applied Mathematics and Computation, 276, 200–217.

    Article  MathSciNet  MATH  Google Scholar 

  76. Tavazoei, M. S., & Haeri, M. (2008). Limitations of frequency domain approximation for detecting chaos in fractional-order systems. Nonlinear Analysis, 69, 1299–1320.

    Article  MathSciNet  MATH  Google Scholar 

  77. Tavazoei, M. S., & Haeri, M. (2009). A proof for non existence of periodic solutions in time invariant fractional-order systems. Automatica, 45, 1886–1890.

    Article  MathSciNet  MATH  Google Scholar 

  78. Vaidyanathan, S. (2012). Anti-synchronization of four-wing chaotic systems via sliding mode control. International Journal of Automation and Computing, 9, 274–279.

    Article  Google Scholar 

  79. Vaidyanathan, S. (2013). A new six-term 3-D chaotic system with an exponential nonlineariry. Far East Journal of Mathematical Sciences, 79, 135–143.

    MATH  Google Scholar 

  80. Vaidyanathan, S. (2014). Analysis and adaptive synchronization of eight-term novel 3-D chaotic system with three quadratic nonlinearities. The European Physical Journal Special Topics, 223, 1519–1529.

    Article  Google Scholar 

  81. Vaidyanathan, S. (2016). Analysis, control and synchronization of a novel 4-D highly hyperchaotic system with hidden attractors. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 529–552). Germany: Springer.

    Google Scholar 

  82. Vaidyanathan, S., & Azar, A. T. (2015a). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos Modelling and Control Systems Design Studies in Computational Intelligence (Vol. 581, pp. 19–38). Germany: Springer.

    Google Scholar 

  83. Vaidyanathan, S., & Azar, A. T. (2015b). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan-Madhavan chaotic systems. Studies in Computational Intelligence, 576, 527–547.

    Google Scholar 

  84. Vaidyanathan, S., & Azar, A. T. (2015c). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan chaotic systems. Studies in Computational Intelligence, 576, 549–569.

    Google Scholar 

  85. Vaidyanathan, S., & Azar, A. T. (2016a). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 203–224). Germany: Springer.

    Google Scholar 

  86. Vaidyanathan, S., & Azar, A. T. (2016b). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 249–274). Germany: Springer.

    Google Scholar 

  87. Vaidyanathan, S., & Azar, A. T. (2016c). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 225–247). Germany: Springer.

    Google Scholar 

  88. Vaidyanathan, S., & Azar, A. T. (2016d). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 155–178). Germany: Springer.

    Google Scholar 

  89. Vaidyanathan, S., & Azar, A. T. (2016e). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 275–296). Germany: Springer.

    Google Scholar 

  90. Vaidyanathan, S., & Azar, A. T. (2016f). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 179–202). Germany: Germany.

    Google Scholar 

  91. Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015a). Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Studies in Computational Intelligence, 581, 39–58.

    Google Scholar 

  92. Vaidyanathan, S., Pham, V. T., & Volos, C. K. (2015b). A 5-d hyperchaotic rikitake dynamo system with hidden attractors. The European Physical Journal Special Topics, 224, 1575–1592.

    Google Scholar 

  93. Vaidyanathan, S., Volos, C., Pham, V. T., Madhavan, K., & Idowo, B. A. (2014). Adaptive backstepping control, synchronization and circuit simualtion of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 33, 257–285.

    MATH  Google Scholar 

  94. Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015c). Analysis, control, synchronization and spice implementation of a novel 4-d hyperchaotic rikitake dynamo system without equilibrium. Journal of Engineering Science and Technology Review, 8, 232–244.

    Google Scholar 

  95. Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2011). Various synchronization phenomena in bidirectionally coupled double scroll circuits. Communications in Nonlinear Science and Numerical Simulation, 71, 3356–3366.

    Article  MathSciNet  MATH  Google Scholar 

  96. Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2012). A chaotic path planning generator for autonomous mobile robots. Robotics and Automation Systems, 60, 651–656.

    Article  Google Scholar 

  97. Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93, 1328–1340.

    Article  Google Scholar 

  98. Wang, X., & Chen, G. (2013). Constructing a chaotic system with any number of equilibria. Nonlinear Dynamics, 71, 429–436.

    Article  MathSciNet  Google Scholar 

  99. Wei, Z. (2011). Dynamical behaviors of a chaotic system with no equilibria. Physics Letters A, 376, 102–108.

    Article  MathSciNet  MATH  Google Scholar 

  100. Westerlund, S., & Ekstam, L. (1994). Capacitor theory. IEEE Transactions on Dielectrics and Electrical Insulation, 1, 826–839.

    Article  Google Scholar 

  101. Woafo, P., & Kadji, H. G. E. (2004). Synchronized states in a ring of mutually coupled self-sustained electrical oscillators. Physical Review E, 69, 046206.

    Article  Google Scholar 

  102. Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D, 16, 285–317.

    Google Scholar 

  103. Yalcin, M. E., Suykens, J. A. K., & Vandewalle, J. (2004). True random bit generation from a double-scroll attractor. IEEE Transactions on Circuits Systems I, Regular Papers, 51, 1395–1404.

    Google Scholar 

  104. Yalcin, M. E., Suykens, J. A. K., & Vandewalle, J. (2005). Cellular neural networks. World Scientific, Singapore: Multi-Scroll Chaos and Synchronization.

    Google Scholar 

  105. Yang, Q. G., & Zeng, C. B. (2010). Chaos in fractional conjugate lorenz system and its scaling attractor. Communications in Nonlinear Science and Numerical Simulation, 15, 4041–4051.

    Article  MathSciNet  MATH  Google Scholar 

  106. Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Germany: Springer.

    Book  MATH  Google Scholar 

  107. Zhusubaliyev, Z. T., & Mosekilde, E. (2015). Multistability and hidden attractors in a multilevel DC/DC converter. Mathematics and Computers in Simulation, 109, 32–45.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.02–2012.27

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet-Thanh Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pham, VT., Vaidyanathan, S., Volos, C.K., Azar, A.T., Hoang, T.M., Van Yem, V. (2017). A Three-Dimensional No-Equilibrium Chaotic System: Analysis, Synchronization and Its Fractional Order Form. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics