An Experience Integrating Response-Time Analysis and Optimization with an MDE Strategy

  • Juan M. Rivas
  • J. Javier Gutiérrez
  • Mario Aldea
  • César Cuevas
  • Michael González Harbour
  • José María Drake
  • Julio L. Medina
  • Laurent Rioux
  • Rafik Henia
  • Nicolas Sordon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9946)

Abstract

The objective of this experience is applying Model-Driven Engineering (MDE) to the development of complex design toolchains for distributed real-time systems by integrating stand-alone tools for this kind of system. MDE provides the capability to present to each tool the view of the design that is required in each case and also provides the traceability between models to return the results of applying a tool to the original model where the whole information of the developed system persists. Since the tools require complex and interrelated scenarios of model transformation processes they need to be programmed and optimized to obtain acceptable execution times and scalability. The experience described in this paper is the development of a Model-Driven Engineering (MDE) toolchain to support the design of distributed real-time systems using stand-alone tools for calculating response times, assigning priorities to tasks and allocating tasks to processors. The process starts from a base design described with a model that follows the OMG MARTE specification. This toolchain can be applied at any stage of the design process using timing parameters with different degrees of refinement, thus allowing the exploration of different design solutions when needed.

Keywords

MDE tools IDE Schedulability analysis Optimization Real-time Design space exploration 

References

  1. 1.
    Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 26–31 (2006)CrossRefGoogle Scholar
  2. 2.
    Object Management Group: UML profile for MARTE: modeling and analysis of real time embedded systems, version 1.1. OMG document formal/2011‐06‐02 (2011)Google Scholar
  3. 3.
    Rioux, L., Henia, R., Sordon, N., González Harbour, M., Gutiérrez, J.J., Rivas, J.M., Cuevas, C., Drake, J.M., Medina, J.L.: Schedulability analysis and optimization in a model-based integrated toolchain: synthetic MARTE models for optimizing real-time design with MAST and TEMPO. In: Proceedings of the Forum on specification & Design Languages, FDL 2015, Barcelona, Spain, Demo Night Session (2015)Google Scholar
  4. 4.
    Mraidha, C., Tucci-Piergiovanni, S., Gérard, S.: Optimum: a MARTE-based methodology for schedulability analysis at early design stages. ACM SIGSOFT Softw. Eng.Notes 36, 1–8 (2011)CrossRefGoogle Scholar
  5. 5.
    Ouhammou, Y., Grolleau, E., Richard, M., Richard, P.: Towards a model-based approach guiding the scheduling analysis of real-time systems design. In: Proceedings of the 5th International WATERS Workshop, pp. 19–24 (2014)Google Scholar
  6. 6.
    Falkner, K., Chiprianov, V., Falkner, N.J., Szabo, C., Hill, J., Puddy, G., Fraser, D., Johnston, A., Rieckmann, M., Wallis, A.: Model-driven performance prediction of distributed real-time embedded defense systems. In: Proceedings of the 18th International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 155–158 (2013)Google Scholar
  7. 7.
    Pérez, H., Gutiérrez, J.J., Asensio, E., Zamorano, J., de la Puente, J.A.: Model-driven development of high-integrity distributed real-time systems using the end-to-end flow model. In: Proceedings of the 37th Euromicro SEAA Conference, pp. 209–216 (2011)Google Scholar
  8. 8.
    Henia, R., Rioux, L., Sordon, N., Garcia, G.-E., Panunzio, M.: Integrating formal timing analysis in the realtime software development process. In: WOSP 2015, pp. 35–40 (2015)Google Scholar
  9. 9.
    González Harbour, M., Gutiérrez, J.J., Palencia, J.C., Drake, J.M.: MAST: modeling and analysis suite for real time applications. In: Proceedings of the 13th Euromicro Conference on Real-Time Systems, Delft, The Netherlands, pp. 125–134 (2001)Google Scholar
  10. 10.
    González Harbour, M., Gutiérrez, J.J., Drake, J.M., López, P., Palencia, J.C.: Modeling distributed real-time systems with MAST 2. J. Syst. Architect. 56(6), 331–340 (2013). ElsevierCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Tindell, K.W., Clark, J.: Holistic schedulability analysis for distributed hard real-time systems. Microprocessing Microprogramming 40(2–3), 117–134 (1994)CrossRefGoogle Scholar
  13. 13.
    Mäki-Turja, J., Nolin, M.: Efficient implementation of tight response-times for tasks with offsets. Real-Time Syst. J. 40(1), 77–116 (2008)CrossRefMATHGoogle Scholar
  14. 14.
    Palencia, J.C., González Harbour, M.: Exploiting precedence relations in the schedulability analysis of distributed real-time systems. In: Proceedings of the 20th Real-Time Systems Symposium, Phoenix, AZ, USA, pp. 328–339. IEEE (1999)Google Scholar
  15. 15.
  16. 16.
    Frédéric, J., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci. Comput. Program. 72(1), 31–39 (2008)MathSciNetMATHGoogle Scholar
  17. 17.
    Rivas, J.M., Gutiérrez, J.J., Palencia, J.C., González Harbour, M.: Schedulability analysis and optimization of heterogeneous EDF and FP distributed real-time systems. In: Proceedings of the 23rd Euromicro Conference on Real-Time Systems, Porto, pp. 195–204 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Juan M. Rivas
    • 1
  • J. Javier Gutiérrez
    • 1
  • Mario Aldea
    • 1
  • César Cuevas
    • 1
  • Michael González Harbour
    • 1
  • José María Drake
    • 1
  • Julio L. Medina
    • 1
  • Laurent Rioux
    • 2
  • Rafik Henia
    • 2
  • Nicolas Sordon
    • 2
  1. 1.Software Engineering and Real-Time GroupUniversity of CantabriaSantanderSpain
  2. 2.Thales Research and TechnologyPalaiseauFrance

Personalised recommendations