Advertisement

Catalysis Within Dendrimers

  • Anne-Marie Caminade
  • Armelle Ouali
  • Régis Laurent
  • Jean-Pierre Majoral
Chapter
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Dendrimers are hyperbranched macromolecules, synthesized step by step (generation after generation) in an iterative fashion, which structure is reminiscent to that of the branches of trees. Most of their properties are due to their terminal functions, which can be easily modified at will to fulfill the desired properties. In particular, many types of catalytic entities have been used as terminal groups of dendrimers. In some cases, a dendritic effect , that is the enhancement of the catalytic properties when a catalyst is linked to a dendrimer, has been observed. It is also generally possible to recover and reuse the dendritic catalysts. The internal structure of dendrimers can also play a key-role, as it manages cavities which can accommodate the catalytic entities, and enable the substrates to interact with them. Catalytic sites included inside the structure of dendrimers are rare, excepted if they constitute the core of dendrimers (or of dendrons, which are dendritic wedges). Effect of the confinement on the catalysis outcome is generally the main aim of these works. Another type of dendritic catalytic entities taking profit of the internal structure concerns metallic nanoparticles used as core of dendrimers. In this chapter, we will gather information about catalytic entities included inside dendrimers, either covalently linked, or noncovalently entrapped, and on their syntheses. The main types of reactions studied, the role of the generation (size) of the dendrimers, their recovery and reuse, and in general the effect of the confinement inside the dendritic structures on the catalytic efficiency will be discussed.

Keywords

Dendritic Structure Hyperbranched Polymer Asymmetric Hydrogenation Terminal Function Convergent Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    (a) Frechet JMJ, Tomalia DA (eds) (2001) Dendrimers and other dendritic polymers. Wiley, Chichester; (b) Newkome GR, Moorefield CN, Vögtle F (eds) (2001) Dendrimers and dendrons. Concepts, syntheses, applications. Wiley VCH, WeinheimGoogle Scholar
  2. 2.
    Buhleier E, Wehner F, Vögtle F (1978) “Cascade-” and: “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis 78:155–158CrossRefGoogle Scholar
  3. 3.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers—starburst-dendritic macromolecules. Polym J 17:117–132CrossRefGoogle Scholar
  4. 4.
    Newkome GR, Yao ZQ, Baker GR, Gupta VK (1985) Micelles. 1. Cascade molecules—a new approach to micelles—A [27]-arborol. J Org Chem 50(11):2003–2004CrossRefGoogle Scholar
  5. 5.
    Hawker CJ, Frechet JMJ (1990) Preparation of polymers with controlled molecular architecture—a new convergent approach to dendritic macromolecules. J Am Chem Soc 112(21):7638–7647CrossRefGoogle Scholar
  6. 6.
    Miller TM, Neenan TX (1990) Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chem Mater 2(4):346–349CrossRefGoogle Scholar
  7. 7.
    Morgenroth F, Reuther E, Mullen K (1997) Polyphenylene dendrimers: from three-dimensional to two-dimensional structures. Angew Chem-Int Ed Engl 36(6):631–634CrossRefGoogle Scholar
  8. 8.
    Worner C, Mulhaupt R (1993) Polynitrile-functional and polyamine-functional poly(trimethylene imine) dendrimers. Angew Chem-Int Ed Engl 32(9):1306–1308CrossRefGoogle Scholar
  9. 9.
    de Brabander van den Berg EMM, Meijer EW (1993) Poly(propylene imine) dendrimers—large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem-Int Ed Engl 32(9):1308–1311Google Scholar
  10. 10.
    Zhou LL, Roovers J (1993) Synthesis of novel carbosilane dendritic macromolecules. Macromolecules 26(5):963–968CrossRefGoogle Scholar
  11. 11.
    Launay N, Caminade AM, Lahana R, Majoral JP (1994) A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew Chem-Int Ed Engl 33(15–16):1589–1592CrossRefGoogle Scholar
  12. 12.
    Lartigue ML, Donnadieu B, Galliot C, Caminade AM, Majoral JP, Fayet JP (1997) Large dipole moments of phosphorus-containing dendrimers. Macromolecules 30(23):7335–7337CrossRefGoogle Scholar
  13. 13.
    Zhang W, Simanek EE (2000) Dendrimers based on melamine. Divergent and orthogonal, convergent syntheses of a G3 dendrimer. Org Lett 2(6):843–845CrossRefGoogle Scholar
  14. 14.
    Caminade AM, Turrin CO, Laurent R, Ouali A, Delavaux-Nicot B (eds) (2011) Dendrimers: towards catalytic, material and biomedical uses. Wiley, Chichester, UKGoogle Scholar
  15. 15.
    Miedaner A, Curtis CJ, Barkley RM, Dubois DL (1994) Electrochemical reduction of CO2 catalyzed by small organophosphine dendrimers containing palladium. Inorg Chem 33(24):5482–5490CrossRefGoogle Scholar
  16. 16.
    Knapen JWJ, Van der Made AW, De Wilde JC, Van Leeuwen PWNM, Wijkens P, Grove DM, Van Koten G (1994) Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(Ii) complexes. Nature 372(6507):659–663CrossRefGoogle Scholar
  17. 17.
    Astruc D, Chardac F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101(9):2991–3023CrossRefGoogle Scholar
  18. 18.
    Kreiter R, Kleij AW, Gebbink R, van Koten G (2001) Dendritic catalysts. In: Topics in current chemistry. Dendrimers IV, vol 217. Springer, Berlin, pp 163–199Google Scholar
  19. 19.
    Oosterom GE, Reek JNH, Kamer PCJ, van Leeuwen P (2001) Transition metal catalysis using functionalized dendrimers. Angew Chem Int Edit 40(10):1828–1849CrossRefGoogle Scholar
  20. 20.
    van Heerbeek R, Kamer PCJ, van Leeuwen P, Reek JNH (2002) Dendrimers as support for recoverable catalysts and reagents. Chem Rev 102(10):3717–3756CrossRefGoogle Scholar
  21. 21.
    Mery D, Astruc D (2006) Dendritic catalysis: major concepts and recent progress. Coord Chem Rev 250(15–16):1965–1979CrossRefGoogle Scholar
  22. 22.
    Caminade AM, Servin P, Laurent R, Majoral JP (2008) Dendrimeric phosphines in asymmetric catalysis. Chem Soc Rev 37(1):56–67CrossRefGoogle Scholar
  23. 23.
    Caminade AM, Ouali A, Keller M, Majoral JP (2012) Organocatalysis with dendrimers. Chem Soc Rev 41(11):4113–4125CrossRefGoogle Scholar
  24. 24.
    Wang D, Astruc D (2013) Dendritic catalysis-basic concepts and recent trends. Coord Chem Rev 257(15–16):2317–2334CrossRefGoogle Scholar
  25. 25.
    Caminade AM, Ouali A, Laurent R, Turrin CO, Majoral JP (2016) Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord Chem Rev 308(2):478–497Google Scholar
  26. 26.
    Helms B, Frechet JMJ (2006) The dendrimer effect in homogeneous catalysis. Adv Synth Catal 348(10–11):1125–1148CrossRefGoogle Scholar
  27. 27.
    Caminade AM, Ouali A, Laurent R, Turrin CO, Majoral JP (2015) The dendritic effect illustrated with phosphorus dendrimers. Chem Soc Rev 44(12):3890–3899CrossRefGoogle Scholar
  28. 28.
    Hecht S, Frechet JMJ (2001) Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science. Angew Chem Int Edit 40(1):74–91CrossRefGoogle Scholar
  29. 29.
    Twyman LJ, King ASH, Martin IK (2002) Catalysis inside dendrimers. Chem Soc Rev 31(2):69–82CrossRefGoogle Scholar
  30. 30.
    Ouali A, Caminade AM (2011) Catalytic sites inside the dendrimeric structure for homogeneous catalysis. In: Caminade AM, Turrin CO, Laurent R, Ouali A, Delavaux-Nicot B (eds) Dendrimers: towards catalytic, material and biomedical uses. Wiley, Chichester, UK, pp 183–195Google Scholar
  31. 31.
    He YM, Feng Y, Fan QH (2014) Asymmetric hydrogenation in the core of dendrimers. Acc Chem Res 47(10):2894–2906CrossRefGoogle Scholar
  32. 32.
    Astruc D, Wang D, Deraedt C, Liang LY, Ciganda R, Ruiz J (2015) Catalysis inside dendrimers. Synthesis 47(14):2017–2031 (Stuttgart)CrossRefGoogle Scholar
  33. 33.
    Brunner H, Altmann S (1994) Enantioselective catalysis, 90. Optically-active nitrogen ligands with dendrimeric structure. Chem Ber 127(11):2285–2296CrossRefGoogle Scholar
  34. 34.
    Brunner H (1995) Dendrizymes—expanded ligands for enantioselective catalysis. J Organomet Chem 500(1–2):39–46CrossRefGoogle Scholar
  35. 35.
    Fan QH, Chen YM, Chen XM, Jiang DZ, Xi F, Chan ASC (2000) Highly effective and recyclable dendritic BINAP ligands for asymmetric hydrogenation. Chem Commun 9:789–790CrossRefGoogle Scholar
  36. 36.
    Deng GJ, Fan QH, Chen XM (2002) Synthesis of dendritic BINAP ligands and their applications in asymmetric hydrogenation. Chin J Chem 20(11):1139–1141CrossRefGoogle Scholar
  37. 37.
    Deng GJ, Fan QH, Chen XM, Liu GH (2003) Dendritic BINAP based system for asymmetric hydrogenation of simple aryl ketones. J Mol Catal A-Chem 193(1–2):21–25CrossRefGoogle Scholar
  38. 38.
    Wang ZJ, Deng GJ, Li Y, He YM, Tang WJ, Fan QH (2007) Enantioselective hydrogenation of quinolines catalyzed by Ir(BINAP)-cored dendrimers: dramatic enhancement of catalytic activity. Org Lett 9(7):1243–1246CrossRefGoogle Scholar
  39. 39.
    Ma BD, Ding ZY, Liu J, He YM, Fan QH (2013) Highly enantioselective hydrogenation of 2,4-diaryl-1,5-benzodiazepines catalyzed by dendritic phosphinooxazoline Iridium complexes. Chem Asian J 8(6):1101–1104CrossRefGoogle Scholar
  40. 40.
    Yi B, Fan QH, Deng GJ, Li YM, Qiu LQ, Chan ASC (2004) Novel chiral dendritic diphosphine ligands for Rh(I)-catalyzed asymmetric hydrogenation: remarkable structural effects on catalytic properties. Org Lett 6(9):1361–1364CrossRefGoogle Scholar
  41. 41.
    Deng GJ, Li GR, Zhu LY, Zhou HF, He YM, Fan QH, Shuai ZG (2006) Dendritic BIPHEP: synthesis and application in asymmetric hydrogenation of beta-ketoesters. J Mol Catal A-Chem 244(1–2):118–123CrossRefGoogle Scholar
  42. 42.
    Ma BD, Miao TT, Sun YH, He YM, Liu J, Feng Y, Chen H, Fan QH (2014) A new class of tunable dendritic diphosphine ligands: synthesis and applications in the Ru-catalyzed asymmetric hydrogenation of functionalized ketones. Chem-Eur J 20(32):9969–9978CrossRefGoogle Scholar
  43. 43.
    Tang WJ, Huang YY, He YM, Fan QH (2006) Dendritic MonoPhos: synthesis and application in Rh-catalyzed asymmetric hydrogenation. Tetrahedron-Asymmetry 17(4):536–543CrossRefGoogle Scholar
  44. 44.
    Zhang F, Li Y, Li ZW, He YM, Zhu SF, Fan QH, Zhou QL (2008) Modular chiral dendritic monodentate phosphoramidite ligands for Rh(II)-catalyzed asymmetric hydrogenation: unprecedented enhancement of enantioselectivity. Chem Commun 45:6048–6050CrossRefGoogle Scholar
  45. 45.
    Deng GJ, Fan QH, Chen XM, Liu DS, Chan ASC (2002) A novel system consisting of easily recyclable dendritic Ru-BINAP catalyst for asymmetric hydrogenation. Chem Commun 15:1570–1571CrossRefGoogle Scholar
  46. 46.
    Fujihara T, Yoshida S, Ohta H, Tsuji Y (2008) Triarylphosphanes with dendritically arranged tetraethylene glycol moieties at the periphery: an efficient ligand for the Palladium-catalyzed Suzuki-Miyaura coupling reaction. Angew Chem Int Edit 47(43):8310–8314CrossRefGoogle Scholar
  47. 47.
    Snelders DJM, van Koten G, Gebbink R (2009) Hexacationic Dendriphos ligands in the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction: scope and mechanistic studies. J Am Chem Soc 131(32):11407–11416CrossRefGoogle Scholar
  48. 48.
    Yamago S, Furukawa M, Azuma A, Yoshida J (1998) Synthesis of optically active dendritic binaphthols and their metal complexes for asymmetric catalysis. Tetrahedron Lett 39(22):3783–3786CrossRefGoogle Scholar
  49. 49.
    Rheiner PB, Seebach D (1999) Dendritic TADDOLs: synthesis, characterization and use in the catalytic enantioselective addition of Et2Zn to benzaldehyde. Chem-Eur J 5(11):3221–3236CrossRefGoogle Scholar
  50. 50.
    Zhao M, Helms B, Slonkina E, Friedle S, Lee D, DuBois J, Hedman B, Hodgson KO, Frechet JMJ, Lippard SJ (2008) Iron complexes of dendrimer-appended carboxylates for activating dioxygen and oxidizing hydrocarbons. J Am Chem Soc 130(13):4352–4363CrossRefGoogle Scholar
  51. 51.
    Yang BY, Chen XM, Deng GJ, Zhang YL, Fan QH (2003) Chiral dendritic bis(oxazoline) copper(II) complexes as Lewis acid catalysts for enantioselective aldol reactions in aqueous media. Tetrahedron Lett 44(17):3535–3538CrossRefGoogle Scholar
  52. 52.
    Mak CC, Chow HF (1997) Dendritic catalysts: reactivity and mechanism of the dendritic bis(oxazoline)metal complex catalyzed Diels-Alder reaction. Macromolecules 30(4):1228–1230CrossRefGoogle Scholar
  53. 53.
    Chow HF, Mak CC (1997) Dendritic bis(oxazoline)copper(II) catalysts. 2.1 Synthesis, reactivity, and substrate selectivity. J Org Chem 62(15):5116–5127CrossRefGoogle Scholar
  54. 54.
    Tang WJ, Yang NF, Yi B, Deng GJ, Huang YY, Fan QH (2004) Phase selectively soluble dendrimer-bound osmium complex: a highly effective and easily recyclable catalyst for olefin dihydroxylation. Chem Commun 12:1378–1379CrossRefGoogle Scholar
  55. 55.
    Bolm C, Derrien N, Seger A (1996) Hyperbranched macromolecules in asymmetric catalysis. Synlett 4:387–388CrossRefGoogle Scholar
  56. 56.
    Fujihara T, Obora Y, Tokunaga M, Sato H, Tsuji Y (2005) Dendrimer N-heterocyclic carbene complexes with rhodium(I) at the core. Chem Commun 36:4526–4528CrossRefGoogle Scholar
  57. 57.
    Fujihara T, Obora Y, Tokunaga M, Tsuji Y (2007) Rhodium(III) complexes with a bidentate N-heterocyclic carbene ligand bearing flexible dendritic frameworks. Dalton Trans 16:1567–1569CrossRefGoogle Scholar
  58. 58.
    Ortiz AM, Sanchez-Mendez A, de Jesus E, Flores JC, Gomez-Sal P, Mendicuti F (2016) Poly(benzyl ether) dendrimers functionalized at the core with palladium bis(N-heterocyclic carbene) complexes as catalysts for the Heck coupling reaction. Inorg Chem 55(3):1304–1314CrossRefGoogle Scholar
  59. 59.
    Oosterom GE, van Haaren RJ, Reek JNH, Kamer PCJ, van Leeuwen P (1999) Catalysis in the core of a carbosilane dendrimer. Chem Commun 12:1119–1120CrossRefGoogle Scholar
  60. 60.
    Oosterom GE, Steffens S, Reek JNH, Kamer PCJ, van Leeuwen P (2002) Core-functionalized dendrimeric mono- and diphosphine rhodium complexes; application in hydroformylation and hydrogenation. Top Catal 19(1):61–73CrossRefGoogle Scholar
  61. 61.
    Botman PNM, Amore A, van Heerbeek R, Back JW, Hiemstra H, Reek JNH, van Maarseveen JH (2004) Dendritic phosphoramidite ligands in Rh-catalysed asymmetric hydrogenations. Tetrahedron Lett 45(31):5999–6002CrossRefGoogle Scholar
  62. 62.
    Muller C, Ackerman LJ, Reek JNH, Kamer PCJ, van Leeuwen P (2004) Site-isolation effects in a dendritic nickel catalyst for the oligomerization of ethylene. J Am Chem Soc 126(45):14960–14963CrossRefGoogle Scholar
  63. 63.
    Maraval V, Laurent R, Caminade AM, Majoral JP (2000) Phosphorus-containing dendrimers and their transition metal complexes as efficient recoverable multicenter homogeneous catalysts in organic synthesis. Organometallics 19(20):4025–4029CrossRefGoogle Scholar
  64. 64.
    Yu JF, RajanBabu TV, Parquette JR (2008) Conformationally driven asymmetric induction of a catalytic dendrimer. J Am Chem Soc 130(25):7845–7847CrossRefGoogle Scholar
  65. 65.
    Liang LY, Ruiz J, Astruc D (2011) The efficient Copper(I) (hexabenzyl)tren catalyst and dendritic analogues for green “click” reactions between azides and alkynes in organic solvent and in water: positive dendritic effects and monometallic mechanism. Adv Synth Catal 353(18):3434–3450CrossRefGoogle Scholar
  66. 66.
    Geotti-Bianchini P, Darbre T, Reymond JL (2013) pH-tuned metal coordination and peroxidase activity of a peptide dendrimer enzyme model with a Fe(II)bipyridine at its core. Org Biomol Chem 11(2):344–352CrossRefGoogle Scholar
  67. 67.
    Bhyrappa P, Young JK, Moore JS, Suslick KS (1996) Dendrimer-metalloporphyrins: synthesis and catalysis. J Am Chem Soc 118(24):5708–5711CrossRefGoogle Scholar
  68. 68.
    Bhyrappa P, Young JK, Moore JS, Suslick KS (1996) Shape selective epoxidation of alkenes by metalloporphyrin-dendrimers. J Mol Catal A-Chem 113(1–2):109–116CrossRefGoogle Scholar
  69. 69.
    Ellis A, Twyman LJ (2013) Probing dense packed limits of a hyperbranched polymer through ligand binding and size selective catalysis. Macromolecules 46(17):7055–7074CrossRefGoogle Scholar
  70. 70.
    Zhang JL, Zhou HB, Huang JS, Che CM (2002) Dendritic ruthenium porphyrins: a new class of highly selective catalysts for alkene epoxidation and cyclopropanation. Chem-Eur J 8(7):1554–1562CrossRefGoogle Scholar
  71. 71.
    Weyermann P, Diederich F (2002) Dendritic iron porphyrins with a tethered axial ligand as new model compounds for heme monooxygenases. Helv Chim Acta 85(2):599–617CrossRefGoogle Scholar
  72. 72.
    Vins P, de Cozar A, Rivilla I, Novakova K, Zangi R, Cvacka J, Arrastia I, Arrieta A, Drasar P, Miranda JI, Cossio FP (2016) Cyclopropanation reactions catalysed by dendrimers possessing one metalloporphyrin active site at the core: linear and sigmoidal kinetic behaviour for different dendrimer generations. Tetrahedron 72(8):1120–1131CrossRefGoogle Scholar
  73. 73.
    Newkome GR, Behera RK, Moorefield CN, Baker GR (1991) Chemistry of micelles series. 18. Cascade polymers—syntheses and characterization of one-directional arborols based on adamantane. J Org Chem 56(25):7162–7167CrossRefGoogle Scholar
  74. 74.
    Kimura M, Sugihara Y, Muto T, Hanabusa K, Shirai H, Kobayashi N (1999) Dendritic metallophthalocyanines—synthesis, electrochemical properties, and catalytic activities. Chem-Eur J 5(12):3495–3500CrossRefGoogle Scholar
  75. 75.
    Nlate S, Astruc D, Neumann R (2004) Synthesis, catalytic activity in oxidation reactions, and recyclability of stable polyoxometalate-centred dendrimers. Adv Synth Catal 346(12):1445–1448CrossRefGoogle Scholar
  76. 76.
    Nlate S, Plault L, Astruc D (2006) Synthesis of 9-and 27-armed tetrakis (diperoxotungsto)phosphate-cored dendrimers and their use as recoverable and reusable catalysts in the oxidation of alkenes, sulfides, and alcohols with hydrogen peroxide. Chem-Eur J 12(3):903–914CrossRefGoogle Scholar
  77. 77.
    Jahier C, Coustou MF, Cantuel M, McClenaghan ND, Buffeteau T, Cavagnat D, Carraro M, Nlate S (2011) Optically active tripodal dendritic polyoxometalates: synthesis, characterization and their use in asymmetric sulfide oxidation with hydrogen peroxide. Eur J Inorg Chem 5:727–738CrossRefGoogle Scholar
  78. 78.
    Jahier C, Mal SS, Kortz U, Nlate S (2010) Dendritic Zirconium-peroxotungstosilicate hybrids: synthesis, characterization, and use as recoverable and reusable sulfide oxidation catalysts. Eur J Inorg Chem 10:1559–1566CrossRefGoogle Scholar
  79. 79.
    Zhao MQ, Crooks RM (1999) Dendrimer-encapsulated Pt nanoparticles: synthesis, characterization, and applications to catalysis. Adv Mater 11(3):217–220CrossRefGoogle Scholar
  80. 80.
    Zhao MQ, Crooks RM (1999) Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew Chem Int Edit 38(3):364–366CrossRefGoogle Scholar
  81. 81.
    Deraedt C, Pinaud N, Astruc D (2014) Recyclable catalytic dendrimer nanoreactor for part-per-million CuI catalysis of “click” chemistry in water. J Am Chem Soc 136(34):12092–12098CrossRefGoogle Scholar
  82. 82.
    Gopidas KR, Whitesell JK, Fox MA (2003) Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer. Nano Lett 3(12):1757–1760CrossRefGoogle Scholar
  83. 83.
    Ramos E, Davin L, Angurell I, Ledesma C, Llorca J (2015) Improved stability of Pd/Al2O3 prepared from Palladium nanoparticles protected with carbosilane dendrons in the dimethyl ether steam reforming reaction. ChemCatChem 7(14):2179–2187CrossRefGoogle Scholar
  84. 84.
    Dalko PI, Moisan L (2004) In the golden age of organocatalysis. Angew Chem-Int Edit 43(39):5138–5175CrossRefGoogle Scholar
  85. 85.
    Morao I, Cossio FP (1997) Dendritic catalysts for the nitroaldol (Henry) reaction. Tetrahedron Lett 38(36):6461–6464CrossRefGoogle Scholar
  86. 86.
    Zubia A, Cossio FP, Morao LA, Rieumont M, Lopez X (2004) Quantitative evaluation of the catalytic activity of dendrimers with only one active center at the core: Application to the nitroaldol (Henry) reaction. J Am Chem Soc 126(16):5243–5252CrossRefGoogle Scholar
  87. 87.
    Guillena G, Kreiter R, Van de Coevering R, Gebbink RJMK, Van Koten G, Mazon P, Chinchilla R, Najera C (2003) Chiroptical properties and applications in PTC of new dendritic cinchonidine-derived ammonium salts. Tetrahedron Asymmetry 14(23):3705–3712CrossRefGoogle Scholar
  88. 88.
    Zhang X, Xu HP, Dong ZY, Wang YP, Liu JQ, Shen JC (2004) Highly efficient dendrimer-based mimic of glutathione peroxidase. J Am Chem Soc 126(34):10556–10557CrossRefGoogle Scholar
  89. 89.
    Bolm C, Derrien N, Seger A (1999) Hyperbranched chiral catalysts for the asymmetric reduction of ketones with borane. Chem Commun 20:2087–2088CrossRefGoogle Scholar
  90. 90.
    Yang NF, Gong H, Tang WJ, Fan QH, Cai CQ, Yang LW (2005) Phase selectively soluble dendritic derivative of 4-(N, N-dimethylamino)pyridine: an easily recyclable catalyst for Baylis-Hillman reactions. J Mol Catal A-Chem 233(1–2):55–59CrossRefGoogle Scholar
  91. 91.
    Liu L, Breslow R (2003) Dendrimeric pyridoxamine enzyme mimics. J Am Chem Soc 125(40):12110–12111CrossRefGoogle Scholar
  92. 92.
    Hecht S, Frechet JMJ (2001) Light-driven catalysis within dendrimers: designing amphiphilic singlet oxygen sensitizers. J Am Chem Soc 123(28):6959–6960CrossRefGoogle Scholar
  93. 93.
    Javor S, Delort E, Darbre T, Reymond JL (2007) A peptide dendrimer enzyme model with a single catalytic site at the core. J Am Chem Soc 129(43):13238–13246CrossRefGoogle Scholar
  94. 94.
    Helms B, Liang CO, Hawker CJ, Frechet JMJ (2005) Effects of polymer architecture and nanoenvironment in acylation reactions employing dendritic (dialkylamino)pyridine catalysts. Macromolecules 38(13):5411–5415CrossRefGoogle Scholar
  95. 95.
    van de Coevering R, Alfers AP, Meeldijk JD, Martinez-Viviente E, Pregosin PS, Gebbink RJMK, van Koten G (2006) Ionic core-shell dendrimers with an octacationic core as noncovalent supports for homogeneous catalysts. J Am Chem Soc 128(39):12700–12713CrossRefGoogle Scholar
  96. 96.
    Petrucci-Samija M, Guillemette V, Dasgupta M, Kakkar AK (1999) A new divergent route to the synthesis of organophosphine and metallodendrimers via simple acid-base hydrolytic chemistry. J Am Chem Soc 121(9):1968–1969CrossRefGoogle Scholar
  97. 97.
    Piotti ME, Rivera F, Bond R, Hawker CJ, Frechet JMJ (1999) Synthesis and catalytic activity of unimolecular dendritic reverse micelles with “internal” functional groups. J Am Chem Soc 121(40):9471–9472CrossRefGoogle Scholar
  98. 98.
    Pan YJ, Ford WT (2000) Amphiphilic dendrimers with both octyl and triethylenoxy methyl ether chain ends. Macromolecules 33(10):3731–3738CrossRefGoogle Scholar
  99. 99.
    Goetheer ELV, Baars MWPL, van den Broeke LJP, Meijer EW, Keurentjes JTF (2000) Functionalized poly(propylene imine) dendrimers as novel phase transfer catalysts in supercritical carbon dioxide. Ind Eng Chem Res 39(12):4634–4640CrossRefGoogle Scholar
  100. 100.
    Chavan SA, Maes W, Gevers LEM, Wahlen J, Vankelecom IFJ, Jacobs PA, Dehaen W, De Vos DE (2005) Porphyrin-functionalized dendrimers: synthesis and application as recyclable photocatalysts in a nanofiltration membrane reactor. Chem-Eur J 11(22):6754–6762CrossRefGoogle Scholar
  101. 101.
    Esposito A, Delort E, Lagnoux D, Djojo F, Reymond JL (2003) Catalytic peptide dendrimers. Angew Chem Int Edit 42(12):1381–1383CrossRefGoogle Scholar
  102. 102.
    Douat-Casassus C, Darbre T, Reymond JL (2004) Selective catalysis with peptide dendrimers. J Am Chem Soc 126(25):7817–7826CrossRefGoogle Scholar
  103. 103.
    Clouet A, Darbre T, Reymond JL (2004) A combinatorial approach to catalytic peptide dendrimers. Angew Chem Int Edit 43(35):4612–4615CrossRefGoogle Scholar
  104. 104.
    Delort E, Darbre T, Reymond JL (2004) A strong positive dendritic effect in a peptide dendrimer-catalyzed ester hydrolysis reaction. J Am Chem Soc 126(48):15642–15643CrossRefGoogle Scholar
  105. 105.
    Delort E, Nguyen-Trung NQ, Darbre T, Reymond JL (2006) Synthesis and activity of histidine-containing catalytic peptide dendrimers. J Org Chem 71(12):4468–4480CrossRefGoogle Scholar
  106. 106.
    Biswas R, Maillard N, Kofoed J, Reymond JL (2010) Comparing dendritic with linear esterase peptides by screening SPOT arrays for catalysis. Chem Commun 46(46):8746–8748CrossRefGoogle Scholar
  107. 107.
    Uhlich NA, Darbre T, Reymond JL (2011) Peptide dendrimer enzyme models for ester hydrolysis and aldolization prepared by convergent thioether ligation. Org Biomol Chem 9(20):7071–7084CrossRefGoogle Scholar
  108. 108.
    Hecht S (2003) Functionalizing the interior of dendrimers: synthetic challenges and applications. J Polym Sci Part A-Polym Chem 41(8):1047–1058CrossRefGoogle Scholar
  109. 109.
    Caminade AM, Fruchon S, Turrin CO, Poupot M, Ouali A, Maraval A, Garzoni M, Maly M, Furer V, Kovalenko V, Majoral JP, Pavan GM, Poupot R (2015) The key role of the scaffold on the efficiency of dendrimer nanodrugs. Nat Commun 6:7722CrossRefGoogle Scholar
  110. 110.
    Ficici E, Andricioaei I, Howorka S (2015) Dendrimers in nanoscale confinement: the interplay between conformational change and nanopore entrance. Nano Lett 15(7):4822–4828CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anne-Marie Caminade
    • 1
    • 2
  • Armelle Ouali
    • 1
    • 2
  • Régis Laurent
    • 1
    • 2
  • Jean-Pierre Majoral
    • 1
    • 2
  1. 1.Laboratoire de Chimie de Coordination (LCC)UPR 8241 CNRSToulouse Cedex 4France
  2. 2.Université de Toulouse, UPS, INPTToulouse Cedex 4France

Personalised recommendations