Advertisement

Sigma-1 Receptor Agonists and Their Clinical Implications in Neuropsychiatric Disorders

  • Yakup Albayrak
  • Kenji HashimotoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 964)

Abstract

Accumulating evidence suggests that sigma-1 receptors play a role in the pathophysiology of neuropsychiatric diseases, as well as in the mechanisms of some selective serotonin reuptake inhibitors (SSRIs). Among the SSRIs, the order of affinity for sigma-1 receptors is as follows: fluvoxamine > sertraline > fluoxetine > escitalopram > citalopram >> paroxetine. Some SSRIs (e.g., fluvoxamine, fluoxetine and escitalopram) and other drugs (donepezil, ifenprodil, dehydroepiandeterone (DHEA)) potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC12 cells, and these effects could be antagonized by the selective sigma-1 receptor antagonist NE-100. Furthermore, fluvoxamine, donepezil, and DHEA, but not paroxetine or sertraline, improved phencyclidine-induced cognitive deficits in mice, and these effects could be antagonized by NE-100. Several clinical studies showed that sigma-1 receptor agonists such as fluvoxamine and ifenprodil could have beneficial effects in patients with neuropsychiatric disorders. In this chapter, the authors will discuss the role of sigma-1 receptors in the mechanistic action of some SSRIs, donepezil, neurosteroids, and ifenprodil, and the clinical implications for sigma-1 receptor agonists.

Keywords

Donepezil Ifenprodil Fluvoxamine Psychiatric diseases 

References

  1. 1.
    Martin W, Eades CE, Thompson JA, Huppler RE (1976) The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532PubMedGoogle Scholar
  2. 2.
    Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fishback JA, Robson MJ, Xu YT, Matsumoto RR (2010) Sigma receptors: potential targets for a new class of antidepressant drug. Pharmacol Ther 127:271–282PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hanner M, Moebius FF, Knaus HG, Striessnig J, Kempner E, Glossmann H (1996) Purification, molecular cloning, and expression of the mammalian sigma-1 binding site. Proc Natl Acad Sci U S A 93:8072–8077PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131:596–610PubMedCrossRefGoogle Scholar
  6. 6.
    Palmer CP, Mahen R, Schnell E, Djamgoz MB, Aydar E (2007) Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res 67:11166–11175PubMedCrossRefGoogle Scholar
  7. 7.
    Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R (2000) Expression of the purported sigma-1 receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 20:375–387PubMedCrossRefGoogle Scholar
  8. 8.
    Hayashi T, Su TP (2004) Sigma-1 receptor ligands: potential in the treatment of neuropsychiatric disorders. CNS Drugs 18:269–284PubMedCrossRefGoogle Scholar
  9. 9.
    Hayashi T, Su TP (2008) An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma1 receptor ligand. Expert Opin Ther Targets 12:45–58PubMedCrossRefGoogle Scholar
  10. 10.
    Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789PubMedCrossRefGoogle Scholar
  12. 12.
    Hayashi T, Tsai SY, Mori T, Fujimoto M, Su TP (2011) Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 15:557–577PubMedCrossRefGoogle Scholar
  13. 13.
    Marrazzo A, Caraci F, Salinaro ET, Su TP, Copani A, Ronsisvalle G (2005) Neuroprotective effects of sigma-1 receptor agonists against β-amyloid-induced toxicity. Neuroreport 16:1223–1226PubMedCrossRefGoogle Scholar
  14. 14.
    Yao H, Yang Y, Kim KJ, Bethel-Brown C, Gong N, Funa K, Gendelman HE, Su TP, Wang JQ, Buch S (2010) Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implication for increased monocyte transmigration. Blood 115:4951–4962PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hashimoto K, Ishiwata K (2006) Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Curr Pharm Des 12:3857–3876PubMedCrossRefGoogle Scholar
  16. 16.
    Hashimoto K (2013) Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression. Prog Neurobiol 100:15–29PubMedCrossRefGoogle Scholar
  17. 17.
    Hashimoto K (2015) Targeting sigma-1 receptor chaperone in the treatment of peinatal brain injury. Exp Neurol 265:118–121PubMedCrossRefGoogle Scholar
  18. 18.
    Hashimoto K (2015) Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication. J Pharmacol Sci 127:6–9PubMedCrossRefGoogle Scholar
  19. 19.
    Kunitachi S, Fujita Y, Ishima T, Kohno M, Horio M, Tanibuchi Y et al (2009) Phencyclidine- induced cognitive deficits in mice are ameliorated by subsequent subchronic administration of donepezil: role of sigma-1 receptors. Brain Res 1279:189–196PubMedCrossRefGoogle Scholar
  20. 20.
    Ishima T, Nishimura T, Iyo M, Hashimoto K (2008) Potentiation of nerve growth factor induced neurite outgrowth in PC12 cells by donepezil: role of sigma-1 receptors and IP3 receptors. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1656–1659CrossRefGoogle Scholar
  21. 21.
    Ishikawa M, Sakata M, Ishii K, Kimura Y, Oda Y, Toyohara J, Wu J, Ishiwata K, Iyo M, Hashimoto K (2009) High occupancy of sigma-1 receptors in the human brain after single oral administration of donepezil: a positron emission tomography study using [11C]SA4503. Int J Neuropsychopharmacol 12:1127–1131PubMedCrossRefGoogle Scholar
  22. 22.
    Su TP, London ED, Jaffe JH (1988) Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 240:219–221PubMedCrossRefGoogle Scholar
  23. 23.
    Su TP, Schell SE, Ford-Rice FY, London ED (1988) Correlation of inhibitory potencies of putative antagonists for sigma receptors in brain and spleen. Eur J Pharmacol 148:467–470PubMedCrossRefGoogle Scholar
  24. 24.
    Hashimoto K, Fujita Y, Iyo M (2007) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of fluvoxamine: role of sigma-1 receptors. Neuropsychopharmacology 32:514–521PubMedCrossRefGoogle Scholar
  25. 25.
    Hashimoto K, London ED (1993) Further characterization of [3H]ifenprodil binding to sigma receptors in rat brain. Eur J Pharmacol 236:159–163PubMedCrossRefGoogle Scholar
  26. 26.
    Hashimoto K, Mantione CR, Spada MR, Neumeyer JL, London ED (1994) Further characterization of [3H]ifenprodil binding in rat brain. Eur J Pharmacol 266:67–77PubMedCrossRefGoogle Scholar
  27. 27.
    Hashimoto K, London ED (1995) Interactions of erythro-ifenprodil, threo-ifenprodil, erythro-idoifenprodil, and eloprodil with subtypes of sigma receptors. Eur J Pharmacol 273:307–310PubMedCrossRefGoogle Scholar
  28. 28.
    Ishima T, Hashimoto K (2012) Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors. PLoS One 7:e37989PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kishimoto A, Kaneko M, Gotoh Y, Hashimoto K (2012) Ifenprodil for the treatment of flashbacks in female posttraumatic stress disorder patients with a history of childhood sexual abuse. Biol Psychiatry 71:e7–e8PubMedCrossRefGoogle Scholar
  30. 30.
    Sasaki T, Hashimoto K, Okawada K, Tone J, Machizawa A, Tano A, Nakazato M, Iyo M (2013) Ifenprodil for the treatment of flashbacks in adolescent female posttraumatic stress disorder patients with a history of abuse. Psychother Psychosom 82:344–345PubMedCrossRefGoogle Scholar
  31. 31.
    Hashimoto K, Sasaki T, Kishimoto A (2013) Old drug ifenprodil, new hope for PTSD with a history of childhood sbuse. Psychopharmacology 227:375–376PubMedCrossRefGoogle Scholar
  32. 32.
    Goodnick PJ, Goldstein BJ (1998) Selective serotonin reuptake inhibitors in affective disorders-I: basic pharmacology. J Psychopharmacol 12(3 Suppl B):S5–S20PubMedCrossRefGoogle Scholar
  33. 33.
    Stahl SM (1998) Using secondary binding properties to select a not so selective serotonin selective reuptake inhibitor. J Clin Psychiatry 59:642–643PubMedCrossRefGoogle Scholar
  34. 34.
    Nemeroff CB, Owens MJ (2004) Pharmacologic differences among the SSRIs: focus on monoamine transporters and the HPA axis. CNS Spectr 9(6 Suppl 4):23–31PubMedCrossRefGoogle Scholar
  35. 35.
    Narita N, Hashimoto K, Tomitaka S, Minabe Y (1996) Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol 307:117–119PubMedCrossRefGoogle Scholar
  36. 36.
    Ishima T, Fujita Y, Hashimoto K (2014) Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol 727:167–173PubMedCrossRefGoogle Scholar
  37. 37.
    Ishikawa M, Ishiwata K, Ishii K, Kimura Y, Sakata M, Naganawa M, Oda K, Miyatake R, Fujisaki M, Shimizu E, Shirayama Y, Iyo M, Hashimoto K (2007) High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503. Biol Psychiatry 62:878–883PubMedCrossRefGoogle Scholar
  38. 38.
    Cohen RM, Weingartner H, Smallberg SA, Pickar D, Murphy DL (1982) Effort and cognition in depression. Arch Gen Psychiatry 39:593–597PubMedCrossRefGoogle Scholar
  39. 39.
    Porter RJ, Gallagher P, Thompson JM, Young AH (2003) Neurocognitive impairment in drug-free patients with major depressive disorder. Br J Psychiatry 182:214–220PubMedCrossRefGoogle Scholar
  40. 40.
    Hashimoto K (2009) Sigma-1 receptors and selective serotonin reuptake inhibitors: clinical implications of their relationship. Cent Nerv Syst Agents Med Chem 9:197–204PubMedCrossRefGoogle Scholar
  41. 41.
    Hindmarch I, Hashimoto K (2010) Cognition and depression: the effects of fluvoxamine, a sigma-1 receptor agonist, reconsidered. Hum Psychopharmacol 25:193–200PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshida T, Ishikawa M, Niitsu T, Nakazato M, Watanabe H, Shiraishi T, Shiina A, Hashimoto T, Kanahara N, Hasegawa T, Enohara M, Kimura A, Iyo M, Hashimoto K (2012) Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One 7:e42676PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Takebayashi M, Hayashi T, Su TP (2002) Nerve growth factorinduced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants. J Pharmacol Exp Ther 303:1227–1237PubMedCrossRefGoogle Scholar
  44. 44.
    Nishimura T, Ishima T, Iyo M, Hashimoto K (2008) Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS ONE 3:e2558PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ishima T, Fujita Y, Kohno M, Kunitachi S, Horio M, Takatsu Y, Minase T, Tanibuchi Y, Hagiwara H, Iyo M, Hashimoto K (2009) Improvement of phencyclidine-induced cognitive deficits in mice by subsequent subchronic administration of fluvoxamine, but not sertraline. Open Clin Chem J 2:7–11CrossRefGoogle Scholar
  46. 46.
    Perez A, Ashford JJ (1990) A double-blind, randomized comparison of fluvoxamine with mianserin in depressive illness. Curr Med Res Opin 12:234–241PubMedCrossRefGoogle Scholar
  47. 47.
    Mandelli L, Serretti A, Colombo C, Florita M, Santoro A, Rossini D, Zanardi R, Smeraldi E (2006) Improvement of cognitive functioning in mood disorder patients with depressive symptomatic recovery during treatment: an exploratory analysis. Psychiatry Clin Neurosci 60:598–604PubMedCrossRefGoogle Scholar
  48. 48.
    Iyo M, Shirayama Y, Watanabe H, Fujisaki M, Miyatake R, Fukami G, Shiina A, Nakazato M, Shiraishi T, Ookami T, Hashimoto K (2008) Fluvoxamine as a sigma-1 receptor agonist improved cognitive impairments in a patient with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1072–1073CrossRefGoogle Scholar
  49. 49.
    Niitsu T, Shirayama Y, Fujisaki M, Hashimoto K, Iyo M (2010) Fluvoxamine improved negative symptoms and cognitive impairments in a patient with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 34:1345–1346CrossRefGoogle Scholar
  50. 50.
    Niitsu T, Fujisaki M, Shiina A, Yoshida T, Hasegawa T, Kanahara N, Hashimoto T, Shiraishi T, Fukami G, Nakazato M, Shirayama Y, Hashimoto K, Iyo M (2012) A randomized, double-blind, placebo-controlled trial of fluvoxamine in patients with schizophrenia: a preliminary study. J Clin Psychopharmacol 32:593–601PubMedCrossRefGoogle Scholar
  51. 51.
    Niitsu T, Iyo M, Hashimoto K (2012) Sigma-1 receptor agonists as therapeutic drugs for cognitive impairment in neuropsychiatric diseases. Curr Pharm Des 18:875–883PubMedCrossRefGoogle Scholar
  52. 52.
    Hamoda H, Osser DN (2008) The psychopharmacology algorithm project at the Harvard South Shore Program: an update on psychotic depression. Harv Rev Psychiatry 16:235–247PubMedCrossRefGoogle Scholar
  53. 53.
    Gatti F, Bellini L, Gasperini M, Perez J, Zanardi R, Smeraldi E (1996) Fluvoxamine alone in the treatment of delusional depression. Am J Psychiatry 153:414–416PubMedCrossRefGoogle Scholar
  54. 54.
    Zanardi R, Franchini L, Serretti A, Perez J, Smeraldi E (2000) Venlafaxine versus fluvoxamine in the treatment of delusional depression: a pilot double-blind controlled study. J Clin Psychiatry 61:26–29PubMedCrossRefGoogle Scholar
  55. 55.
    Zanardi R, Franchini L, Gasperini M, Smeraldi E, Perez J (1997) Long-term treatment of psychotic (delusional) depression with fluvoxamine: an open pilot study. Int Clin Psychopharmacol 12:195–197PubMedCrossRefGoogle Scholar
  56. 56.
    Hayashi T, Su TP (2005) Understanding the role of sigma-1 receptors in psychotic depression. Psychiatric Times 22:54–63Google Scholar
  57. 57.
    Stahl SM (2005) Antidepressant treatment of psychotic major depression: potential role of the sigma receptor. CNS Spectr 10:319–323PubMedCrossRefGoogle Scholar
  58. 58.
    Furuse T, Hashimoto K (2009) Fluvoxamine monotherapy for psychotic depression: the potential role of sigma-1 receptors. Ann General Psychiatry 8:26CrossRefGoogle Scholar
  59. 59.
    Kishimoto A, Todani A, Miura J, Kitagaki T, Hashimoto K (2010) The opposite effects of fluvoxamine and sertraline in the treatment of psychotic major depression: a case report. Ann General Psychiatry 9:23CrossRefGoogle Scholar
  60. 60.
    Ishikawa M, Hashimoto K (2010) The role of sigma-1 receptors in the pathophysiology of neuropsychiatric diseases. J Recept Ligand Channel Res 3:25–36Google Scholar
  61. 61.
    Girard TD, Pandharipande PP, Ely EW (2008) Delirium in the intensive care unit. Crit Care 12(Suppl 3):S3PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Fong TG, Tulebaev SR, Inouye SK (2009) Delirium in elderly adults: diagnosis, prevention and treatment. Nat Rev Neurol 5:210–220PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Maldonado JR (2008) Delirium in the acute care setting: characteristics, diagnosis and treatment. Crit Care Clin 24:657–722PubMedCrossRefGoogle Scholar
  64. 64.
    Gunther ML, Morandi A, Ely EW (2008) Pathophysiology of delirium in the intensive care unit. Crit Care Clin 24:45–65PubMedCrossRefGoogle Scholar
  65. 65.
    Solai LKK (2009) Delirium. In: Sadock BJ, Kaplan HI, Sadock VA (eds) Kaplan & Sadock’s Synopsis of Psychiatry, 9th edn. Wolter Kluwer/Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  66. 66.
    Byerly MJ, Christensen RC, Evans D (1996) Delirium associated with a combination of sertraline, haloperidol, and benztropine. Am J Psychiatry 153:965–966PubMedGoogle Scholar
  67. 67.
    Armstrong SC, Schweitzer SM (1997) Delirium associated with paroxetine and benztropine combination. Am J Psychiatry 154:581–582PubMedCrossRefGoogle Scholar
  68. 68.
    Suzuki Y, Saito M, Someya T (2012) Delirium associated with duloxetine in a depressed patient with Alzheimer’s dementia. Psychiatry Clin Neurosci 66:166PubMedCrossRefGoogle Scholar
  69. 69.
    Howe C, Ravasia S (2003) Venlafaxine-induced delirium. Can J Psychiatr 48:129Google Scholar
  70. 70.
    Alexander J, Nillsen A (2011) Venlafaxine-induced delirium. Aust NZ J Psychiatry 45:606Google Scholar
  71. 71.
    Furuse T, Hashimoto K (2010) Sigma-1 receptor agonist fluvoxamine for delirium in patients with Alzheimer’s disease. Ann General Psychiatry 9:6CrossRefGoogle Scholar
  72. 72.
    Furuse T, Hashimoto K (2010) Sigma-1 receptor agonist fluvoxamine for delirium in intensive care units: report of five cases. Ann General Psychiatry 9:18CrossRefGoogle Scholar
  73. 73.
    Furuse T, Hashimoto K (2010) Sigma-1 receptor agonist fluvoxamine for postoperative delirium in older adults: report of three cases. Ann General Psychiatry 9:28CrossRefGoogle Scholar
  74. 74.
    Hashimoto K, Furuse T (2012) Sigma-1 receptor agonist fluvoxamine for delirium in older adults. Int J Geriatr Psychiatry 27:981–983PubMedCrossRefGoogle Scholar
  75. 75.
    Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res 110:1–23PubMedCrossRefGoogle Scholar
  76. 76.
    de Koning MB, Bloemen OJN, van Amelsvoort TAM, Becker HE, Nieman DH, van der Gaag M, Linszen DH (2009) Early intervention in patients at ultra high risk of psychosis: benefits and risks. Acta Psychiatr Scand 119:426–442PubMedCrossRefGoogle Scholar
  77. 77.
    Liu CC, Demjaha A (2013) Antipsychotic interventions in prodromal psychosis: safety issues. CNS Drugs 27:197–205PubMedCrossRefGoogle Scholar
  78. 78.
    Fusar-Poli P, Deste G, Smieskova R, Barlati S, Yung AR, Howes O, Stieglitz RD, Vita A, McGuire P, Borgwardt S (2012) Cognitive functioning in prodromal psychosis: a meta-analysis. Arch Gen Psychiatry 69:562–571PubMedGoogle Scholar
  79. 79.
    Hashimoto K (2009) Can the sigma-1 receptor agonist fluvoxamine prevent schizophrenia? CNS Neurol Disord Drug Targets 8:470–474PubMedCrossRefGoogle Scholar
  80. 80.
    Tadokoro S, Kanahara N, Kikuchi S, Hashimoto K, Iyo M (2011) Fluvoxamine may prevent onset of psychosis: a case report of a patient at ultra-high risk of psychotic disorder. Ann General Psychiatry 10:26CrossRefGoogle Scholar
  81. 81.
    Owens DGC (1999) Akathisia. In: A guide to the extrapyramidal side- Effects of antipsychotic drugs. Cambridge University Press, New York, N Y, pp 130–162CrossRefGoogle Scholar
  82. 82.
    Sachdev PS (2005) Neuroleptic-induced movement disorders: an overview. Psychiatr Clin North Am 28:255–274PubMedCrossRefGoogle Scholar
  83. 83.
    Kumar R, Sachdev PS (2009) Akathisia and second-generation antipsychotic drugs. Akathisia and second-generation antipsychotic drugs. Curr Opin Psychiatry 22:293–299PubMedCrossRefGoogle Scholar
  84. 84.
    Furuse T, Hashimoto K (2010d) Fluvoxamine for aripiprazole-associated akathisia in patients with schizophrenia: a potential role of sigma-1 receptors. Ann General Psychiatry 9:11CrossRefGoogle Scholar
  85. 85.
    Furuse T, Hashimoto K (2010e) Fluvoxamine for blonanserin-associated akathisia in patients with schizophrenia: report of five cases. Ann General Psychiatry 9:17CrossRefGoogle Scholar
  86. 86.
    Albayrak Y, Hashimoto K (2013) Beneficial effects of sigma-1 agonist fluvoxamine for tardive dyskinesia and tardive akathisia in patients with schizophrenia: report of three cases. Psychiatry Investig 10:417–420PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Walker JM, Martin WJ, Hohmann AG, Hemstreet MK, Roth JS, Leitner ML, Weiser SD, Patrick SL, Patrick RL, Matsumoto RR (1994) Role of sigma receptors in brain mechansism of movement. In: Itzhak Y (ed) Sigma receptors. Academic Press, New York, pp 205–224Google Scholar
  88. 88.
    Albayrak Y, Hashimoto K (2012) Beneficial effects of the sigma-1 agonist fluvoxamine for tardive dyskinesia in patients with post-psychotic depressive disorder of schizophrenia: report of 5 cases. Prim Care Companion CNS Disord 14:12br0140Google Scholar
  89. 89.
    Albayrak Y, Ekinci O (2012) Duloxetine-associated tardive dyskinesia resolved with fluvoxamine: a case report. J Clin Psychopharmacol 32:723–724PubMedCrossRefGoogle Scholar
  90. 90.
    Cayköylü A, Albayrak Y, Uğurlu GK, Ekinci O (2011) Beneficial effects of fluvoxamine for hemiballism in a patient with depressive disorder: a case report. Acta Neurol Belg 111:62–65PubMedGoogle Scholar
  91. 91.
    Albayrak Y, Uğurlu GK, Uğurlu M, Cayköylü A (2012) Beneficial effects of fluvoxamine for chorea in a patient with Huntington’s disease: a case report. Prim Care Companion CNS Disord 14:12l01369Google Scholar

Copyright information

© Springer International Publishing AG (outside the USA) 2017

Authors and Affiliations

  1. 1.Namik Kemal UniversityTekirdagTurkey
  2. 2.Chiba UniversityChibaJapan

Personalised recommendations