Advertisement

Data Mining and Constraints: An Overview

  • Valerio Grossi
  • Dino Pedreschi
  • Franco Turini
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10101)

Abstract

This paper provides an overview of the current state-of-the-art on using constraints in knowledge discovery and data mining. The use of constraints requires mechanisms for defining and evaluating them during the knowledge extraction process. We give a structured account of three main groups of constraints based on the specific context in which they are defined and used. The aim is to provide a complete view on constraints as a building block of data mining methods.

Keywords

Data Mining Association Rule Mining Algorithm Pattern Mining Frequent Itemsets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [ABKS99]
    Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, SIGMOD 1999, pp. 49–60. ACM, New York, NY, USA (1999)Google Scholar
  2. [ABR64]
    Aizerman, M.A., Braverman, E.A., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control 25, 821–837 (1964)MathSciNetGoogle Scholar
  3. [AFGY02]
    Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 429–435 (2002)Google Scholar
  4. [AS94]
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases (VLDB 1994), Santiago de Chile, Chile, 12–15 September, pp. 487–499 (1994)Google Scholar
  5. [ATJ+12]
    Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K., Choi, H.-J.: Single-pass incremental and interactive mining for weighted frequent patterns. Expert Syst. Appl. 39(9), 7976–7994 (2012)CrossRefGoogle Scholar
  6. [BBD00]
    Bradley, P.S., Bennett, K.P., Demiriz, A.: Constrained k-means clustering. Technical report, MSR-TR-2000-65, Microsoft Research (2000)Google Scholar
  7. [BBM04a]
    Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised clustering. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 59–68 (2004)Google Scholar
  8. [BBM04b]
    Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 11. ACM, New York (2004)Google Scholar
  9. [BCCG12]
    Baralis, E., Cagliero, L., Cerquitelli, T., Garza, P.: Generalized association rule mining with constraints. Inf. Sci. 194, 68–84 (2012)CrossRefGoogle Scholar
  10. [BDW08]
    Basu, S., Davidson, I., Wagstaff, K.L.: Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman and Hall/CRC, Boca Raton (2008)MATHGoogle Scholar
  11. [Ber91]
    Bertsekas, D.P.: Linear Network Optimization - Algorithms and Codes. MIT Press, Cambridge (1991)MATHGoogle Scholar
  12. [BFOS84]
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)MATHGoogle Scholar
  13. [BG06]
    Banerjee, A., Ghosh, J.: Scalable clustering algorithms with balancing constraints. Data Min. Knowl. Discov. 13(3), 365–395 (2006)MathSciNetCrossRefGoogle Scholar
  14. [BG08]
    Banerjee, A., Ghosh, J.: Clustering with balancing constraints. Constrained Clustering: Advances in Algorithms. Theory, and Applications, pp. 171–200. Chapman and Hall/CRC, Boca Raton (2008)Google Scholar
  15. [BGV92]
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 144–152. ACM, New York (1992)Google Scholar
  16. [BK03]
    Barbará, D., Kamath, C. (eds.): Proceedings of the Third SIAM International Conference on Data Mining, 1–3 May 2003. SIAM, San Francisco (2003)Google Scholar
  17. [BMR97]
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and optimization. J. ACM 44(2), 201–236 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. [Bur98]
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  19. [BW95]
    Bult, J.R., Wansbeek, T.J.: Optimal selection for direct mail. Mark. Sci. 14(4), 378–394 (1995)CrossRefGoogle Scholar
  20. [CMB03]
    Capelle, M., Masson, C., Boulicaut, J.F.: Mining frequent sequential patterns under regular expressions: a highly adaptive strategy for pushing constraints. In: Proceedings of the Third SIAM International Conference on Data Mining, pp. 316–320 (2003)Google Scholar
  21. [CTG12]
    Chand, C., Thakkar, A., Ganatra, A.: Sequential pattern mining: survey and current research challenges. Int. J. Soft Comput. Eng. (IJSCE) 2(1), 2231–2307 (2012)Google Scholar
  22. [CV95]
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATHGoogle Scholar
  23. [Dav12]
    Davidson, I.: Two approaches to understanding when constraints help clustering. In: The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1312–1320 (2012)Google Scholar
  24. [DBB08]
    Demiriz, A., Bennett, K.P., Bradley, P.S.: Using assignment constraints to avoid empty clusters in k-means clustering. Constrained Clustering: Advances in Algorithms. Theory, and Applications, pp. 201–220. Chapman and Hall/CRC, Boca Raton (2008)Google Scholar
  25. [DDV13]
    Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 419–434. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40994-3_27 CrossRefGoogle Scholar
  26. [DH73]
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  27. [DMM08]
    Druck, G., Mann, G.S., McCallum, A.: Learning from labeled features using generalized expectation criteria. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 595–602 (2008)Google Scholar
  28. [DP96]
    Domingos, P., Pazzani, M.J.: Beyond independence: conditions for the optimality of the simple Bayesian classifier. In: Proceedings of the 13th International Conference on Machine Learning (ICML 1996), Bari, Italy, pp. 148–156 (1996)Google Scholar
  29. [DR05]
    Davidson, I., Ravi, S.S.: Clustering with constraints: feasibility issues and the k-means algorithm. In: Proceedings of the SIAM International Conference on Data Mining (SDM) (2005)Google Scholar
  30. [DR06]
    Davidson, I., Ravi, S.S.: Identifying and generating easy sets of constraints for clustering. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI), pp. 336–341 (2006)Google Scholar
  31. [DR07]
    Davidson, I., Ravi, S.S.: The complexity of non-hierarchical clustering with instance and cluster level constraints. Data Min. Knowl. Discov. 14(1), 25–61 (2007)MathSciNetCrossRefGoogle Scholar
  32. [DR09]
    Davidson, I., Ravi, S.S.: Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results. Data Min. Knowl. Discov. 18(2), 257–282 (2009)MathSciNetCrossRefGoogle Scholar
  33. [DWB06]
    Davidson, I., Wagstaff, K.L., Basu, S.: Measuring constraint-set utility for partitional clustering algorithms. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 115–126. Springer, Heidelberg (2006). doi: 10.1007/11871637_15 CrossRefGoogle Scholar
  34. [EKSX96]
    Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD), pp. 226–231 (1996)Google Scholar
  35. [EZ13]
    Elloumi, M., Zomaya, A.Y.: Biological Knowledge Discovery Handbook: Preprocessing, Mining and Postprocessing of Biological Data, 1st edn. Wiley, New York (2013)CrossRefMATHGoogle Scholar
  36. [FH95]
    Yongjian, F., Han, J.: Meta-rule-guided mining of association rules in relational databases. In: Proceedings of the Post-Conference Workshops on Integration of Knowledge Discovery in Databases with Deductive and Object-Oriented Databases (KDOOD/TDOOD), pp. 39–46 (1995)Google Scholar
  37. [GMN+15]
    Grossi, V., Monreale, A., Nanni, M., Pedreschi, D., Turini, F.: Clustering formulation using constraint optimization. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 93–107. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-49224-6_9 CrossRefGoogle Scholar
  38. [GRS99]
    Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern mining with regular expression constraints. In: Proceedings of 25th International Conference on Very Large Data Bases (VLDB), pp. 223–234 (1999)Google Scholar
  39. [GS11]
    Grossi, V., Sperduti, A.: Kernel-based selective ensemble learning for streams of trees. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16–22 July 2011, pp. 1281–1287. IJCAI/AAAI (2011)Google Scholar
  40. [GT12]
    Grossi, V., Turini, F.: Stream mining: a novel architecture for ensemble-based classification. Knowl. Inf. Syst. 30(2), 247–281 (2012)CrossRefGoogle Scholar
  41. [HCXY07]
    Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)MathSciNetCrossRefGoogle Scholar
  42. [HF99]
    Han, J., Fu, Y.: Mining multiple-level association rules in large databases. IEEE Trans. Knowl. Data Eng. 11(5), 798–805 (1999)CrossRefGoogle Scholar
  43. [HK12]
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2012)MATHGoogle Scholar
  44. [HLN99]
    Han, J., Lakshmanan, L.V.S., Ng, R.T.: Constraint-based multidimensional data mining. IEEE Comput. 32(8), 46–50 (1999)CrossRefGoogle Scholar
  45. [HPRZ02]
    Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: a new approach to multiclass classification. In: Proceedings of the 13th International Conference Algorithmic Learning Theory (ALT), pp. 365–379 (2002)Google Scholar
  46. [HPY00]
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 16–18 May, pp. 1–12 (2000)Google Scholar
  47. [IWM00]
    Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000). doi: 10.1007/3-540-45372-5_2 CrossRefGoogle Scholar
  48. [Jen96]
    Jensen, F.V.: An introduction to Bayesian networks. Springer, New York (1996)Google Scholar
  49. [KK08]
    Kumar, N., Kummamuru, K.: Semisupervised clustering with metric learning using relative comparisons. IEEE Trans. Knowl. Data Eng. 20(4), 496–503 (2008)CrossRefGoogle Scholar
  50. [KKA04]
    Kummamuru, K., Krishnapuram, R., Agrawal, R.: Learning spatially variant dissimilarity (SVaD) measures. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 611–616 (2004)Google Scholar
  51. [LLS00]
    Lin, T.S., Loh, W.Y., Shib, Y.S.: A comparison of prediction accuracy, complexity, and training time of thirty-tree old and new classification algorithms. Mach. Learn. 40(3), 203–228 (2000)CrossRefGoogle Scholar
  52. [LYC08]
    Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items discarding strategy for discovering high utility itemsets. Data Knowl. Eng. 64(1), 198–217 (2008)CrossRefGoogle Scholar
  53. [MAR96]
    Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A fast scalable classifier for data mining. In: Proceedings of 5th International Conference on Extending Database Technology (EBDT 1996), Avignon, France, pp. 18–32 (1996)Google Scholar
  54. [ME10]
    Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algorithms. ACM Comput. Surv. 43(1), 3: 1–3: 41 (2010)CrossRefGoogle Scholar
  55. [Mic97]
    Michell, T.: Machine Learning. McGraw Hill, New York (1997)Google Scholar
  56. [Mor82]
    Moret, B.M.E.: Decision trees and diagrams. Comput. Surv. 14(4), 593–623 (1982)CrossRefGoogle Scholar
  57. [MPT09]
    Masseglia, F., Poncelet, P., Teisseire, M.: Efficient mining of sequential patterns with time constraints: reducing the combinations. Expert Syst. Appl. 36(2), 2677–2690 (2009)CrossRefGoogle Scholar
  58. [NF07]
    Nijssen, S., Fromont, É.: Mining optimal decision trees from itemset lattices. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 530–539 (2007)Google Scholar
  59. [NF10]
    Nijssen, S., Fromont, E.: Optimal constraint-based decision tree induction from itemset lattices. Data Min. Knowl. Discov. Fromont. 21(1), 9–51 (2010)MathSciNetCrossRefGoogle Scholar
  60. [NPS00]
    Niyogi, P., Pierrot, J.-B., Siohan, O.: Multiple classifiers by constrained minimization. In: Proceedings of the Acoustics, Speech, and Signal Processing of 2000 IEEE International Conference on ICASSP 2000, vol. 06, pp. 3462–3465. IEEE Computer Society, Washington, DC (2000)Google Scholar
  61. [OY12]
    Okabe, M., Yamada, S.: Clustering by learning constraints priorities. In: Proceedings of the 12th International Conference on Data Mining (ICDM2012), pp. 1050–1055 (2012)Google Scholar
  62. [PF08]
    Park, S.H., Furnkranz, J.: Multi-label classification with label constraints. Technical report, Knowledge Engineering Group, TU Darmstadt (2008)Google Scholar
  63. [PHMA+04]
    Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)CrossRefGoogle Scholar
  64. [PHW07]
    Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern growth methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)CrossRefGoogle Scholar
  65. [Pyl99]
    Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  66. [Qui86]
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)Google Scholar
  67. [Qui93]
    Quinlan, J.R.: C4.5 Programs for Machine Learning. Wadsworth International Group, Belmont (1993)Google Scholar
  68. [Qui96]
    Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77–90 (1996)MATHGoogle Scholar
  69. [Rug02]
    Ruggieri, S.: Efficient C4.5. IEEE Trans. Knowl. Data Eng. 14(2), 438–444 (2002)CrossRefGoogle Scholar
  70. [SA95]
    Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proceedings of the 21st Conference on Very Large Data Bases (VLDB), pp. 407–419 (1995)Google Scholar
  71. [SA96]
    Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Proceedings of the 5th International Conference on Extending Database Technology (EDBT), pp. 3–17 (1996)Google Scholar
  72. [SAM96]
    Shafer, J., Agrawal, R., Mehta, M.: Sprint: a scalable parallel classifier for data mining. In: Proceedings of 1996 International Conference on Very Large Data Bases (VLDB 1996), Bombay, India, pp. 544–555 (1996)Google Scholar
  73. [SC08]
    Steinwart, I., Christmann, A.: Support Vector Machines, 1st edn. Springer Publishing Company, Incorporated, Heidelberg (2008)MATHGoogle Scholar
  74. [SG03]
    Strehl, A., Ghosh, J.: Relationship-based clustering and visualization for high-dimensional data mining. INFORMS J. Comput. 15(2), 208–230 (2003)CrossRefMATHGoogle Scholar
  75. [Sha09]
    Shankar, S.: Utility sentient frequent itemset mining and association rule mining: a literature survey and comparative study. Int. J. Soft Comput. Appl. 4, 81–95 (2009)Google Scholar
  76. [SJ03]
    Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: Proceedings of Conference Advances in Neural Information Processing Systems (NIPS) (2003)Google Scholar
  77. [SJ04]
    Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: NIPS, MIT Press (2004)Google Scholar
  78. [SON95]
    Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining association rules in large databases. In: Proceedings of the 21st International Conference on Very Large Data Bases (VLDB), Zurich, Switzerland, 11–15 September 1995, pp. 432–444 (1995)Google Scholar
  79. [ST02]
    Sriphaew, K., Theeramunkong, T.: A new method for finding generalized frequent itemsets in generalized association rule mining. In: Proceedings of the 7th IEEE Symposium on Computers and Communications (ISCC), pp. 1040–1045 (2002)Google Scholar
  80. [SVA97]
    Srikant, R., Quoc, V., Agrawal, R.: Mining association rules with item constraints. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD), pp. 67–73 (1997)Google Scholar
  81. [TJHA05]
    Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)MathSciNetMATHGoogle Scholar
  82. [TM03]
    Tao, F., Murtagh, F.: Weighted association rule mining using weighted support and significance framework. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 661–666 (2003)Google Scholar
  83. [Toi96]
    Toivonen, H.: Sampling large databases for association rules. In: Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB), Mumbai (Bombay), India, 3–6 September, pp. 134–145 (1996)Google Scholar
  84. [TSK06]
    Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley, Boston (2006)Google Scholar
  85. [TSWYng]
    Tseng, V.S., Shie, B.-E., Wu, C.-W., Philip, S.: Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Transactions on Knowledge and Data Engineering, forthcomingGoogle Scholar
  86. [VSKSvdH09]
    Vanderlooy, S., Sprinkhuizen-Kuyper, I.G., Smirnov, E.N., Jaap van den Herik, H.: The ROC isometrics approach to construct reliable classifiers. Intell. Data Anal. 13(1), 3–37 (2009)Google Scholar
  87. [WBD06]
    Wagstaff, K., Basu, S., Davidson, I.: When is constrained clustering beneficial, and why? In: Proceedings of The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI) (2006)Google Scholar
  88. [WC00]
    Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intelligence (AAAI/IAAI), p. 1097 (2000)Google Scholar
  89. [WCRS01]
    Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 577–584. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  90. [WFH11]
    Witten, I.H., Frank, E., Hall, M.: Data Mining, Pratical Machine Learning Tools and Techiniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)Google Scholar
  91. [WH11]
    Wu, C.-M., Huang, Y.-F.: Generalized association rule mining using an efficient data structure. Expert Syst. Appl. 38(6), 7277–7290 (2011)CrossRefGoogle Scholar
  92. [WK91]
    Weiss, S.M., Kulikowski, C.A.: Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets. Machine Learning and Expert Systems. Morgan Kaufmann, San Francisco (1991)Google Scholar
  93. [WLW10]
    Wei, J.-T., Lin, S.-Y., Hsin-Hung, W.: A review of the application of RFM model. Afr. J. Bus. Manag. 4(19), 4199–4206 (2010)Google Scholar
  94. [WWZ+05]
    Wang, W., Wang, C., Zhu, Y., Shi, B., Pei, J., Yan, X., Han, J.: Graphminer: a structural pattern-mining system for large disk-based graph databases and its applications. In: zcan, F. (ed.) SIGMOD Conference, pp. 879–881. ACM (2005)Google Scholar
  95. [WYY00]
    Wang, W., Yang, J., Philip, S.: Efficient mining of weighted association rules (WAR). In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 270–274 (2000)Google Scholar
  96. [YG04]
    Yan, W., Goebel, K.F.: Designing classifier ensembles with constrained performance requirements. In: Proceedings of SPIE Defense and Security Symposium, Multisensor Multisource Information Fusion: Architectures, Algorithms, and Applications 2004, pp. 78–87 (2004)Google Scholar
  97. [YH02]
    Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM 2002, p. 721. IEEE Computer Society, Washington, DC, USA (2002)Google Scholar
  98. [YL05]
    Yun, U., Leggett, J.J.: WFIM: weighted frequent itemset mining with a weight range and a minimum weight. In: Proceeding of the 2005 SIAM International Data Mining Conference, Newport Beach, CA, pp. 636–640 (2005)Google Scholar
  99. [YR11]
    Yun, U., HoRyu, K.: Approximate weighted frequent pattern mining with/without noisy environments. Knowl.-Based Syst. 24(1), 73–82 (2011)CrossRefGoogle Scholar
  100. [YSRY12]
    Yun, U., Shin, H., Ho Ryu, K., Yoon, E.: An efficient mining algorithm for maximal weighted frequent patterns in transactional databases. Knowl.-Based Syst. 33, 53–64 (2012)CrossRefGoogle Scholar
  101. [Zak01]
    Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1/2), 31–60 (2001)CrossRefMATHGoogle Scholar
  102. [ZG03]
    Zhong, S., Ghosh, J.: Scalable, balanced model-based clustering. In: Proceedings of the Third SIAM International Conference on Data Mining, San Francisco (SDM) (2003)Google Scholar
  103. [ZPOL97]
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD 1997), Newport Beach, California, USA, 14–17 August, pp. 283–286 (1997)Google Scholar
  104. [ZRL96]
    Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. SIGMOD Rec. 25(2), 103–114 (1996)CrossRefGoogle Scholar
  105. [ZZ02]
    Zhang, C., Zhang, S.: Association Rule Mining: Models and Algorithms. LNCS, vol. 2307. Springer, Heidelberg (2002)MATHGoogle Scholar
  106. [ZZNS09]
    Zhang, Y., Zhang, L., Nie, G., Shi, Y.: A survey of interestingness measures for association rules. In: Proceedings of the Second International Conference on Business Intelligence and Financial Engineering (BIFE), pp. 460–463 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations