Visual Odometry in Dynamic Environments with Geometric Multi-layer Optimisation

  • Haokun Geng
  • Hsiang-Jen Chien
  • Radu Nicolescu
  • Reinhard Klette
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9992)

Abstract

This paper presents a novel approach for optimising visual odometry results in a dynamic outdoor environment. Egomotion estimation is still considered to be one of the more difficult tasks in computer vision because of its continued computation pipeline: every phase of visual odometry can be a source of noise or errors, and influence future results. Also, tracking features in a dynamic environment is very challenging. Since feature tracking can only match two features in integer coordinates, there will be a data loss at sub-pixel level. In this paper we introduce a weighting scheme that measures the geometric relations between different layers: We divide tracked features into three groups based on geometric constrains; each group is recognised as being a “layer”. Each layer has a weight which depends on the distribution of the grouped features on the 2D image and the actual position in 3D scene coordinates. This geometric multi-layer approach can effectively remove all the dynamic features in the scene, and provide more reliable feature tracking results. Moreover, we propose a 3-state Kalman filter optimisation approach. Our method follows the traditional process of visual odometry algorithms by focusing on motion estimation between pairs of two consecutive frames. Experiments and evaluations are carried out for trajectory estimation. We use the provided ground truth of the KITTI data-sets to analyse mean rotation and translation errors over distance.

References

  1. 1.
    Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang, T., Franke, U., Appenrodt, N., Keller, C.G., Kaus, E., Herrtwich, R.G., Rabe, C., Pfeiffer, D., Lindner, F., Stein, F., Erbs, F., Enzweiler, M., Knoppel, C., Hipp, J., Haueis, M., Trepte, M., Brenk, C., Tamke, A., Ghanaat, M., Braun, M., Joos, A., Fritz, H., Mock, H., Hein, M., Zeeb, E.: Making Bertha drive - an autonomous journey on a historic route. IEEE Spectr. 51(8), 44–49 (2015)Google Scholar
  2. 2.
    Klette, R.: Concise Computer Vision. Springer, London (2014)CrossRefMATHGoogle Scholar
  3. 3.
    Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of CVPR, pp. 652–659 (2004)Google Scholar
  4. 4.
    Scaramuzza, D., Fraundorfer, F.: Visual odometry tutorial. Robot. Autom. Mag. 18(4), 80–92 (2011)CrossRefGoogle Scholar
  5. 5.
    Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars Exploration Rovers. J. Field Robot. 24, 169–186 (2007)CrossRefGoogle Scholar
  6. 6.
    Matthies, L., Shafer, S.: Error modeling in stereo navigation. Int. J. Robot. Autom. 3, 239–248 (1987)CrossRefGoogle Scholar
  7. 7.
    Matthies, L.: Dynamic stereo vision, Ph.D. dissertation, Carnegie Mellon University (1989)Google Scholar
  8. 8.
    Demirdjian, D., Darrell, T.: Motion estimation from disparity images. In: Proceedings of ICCV, vol. 1, pp. 213–218 (2001)Google Scholar
  9. 9.
    Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 582–595. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_42 CrossRefGoogle Scholar
  10. 10.
    Kalman, R.E.: A new approach to linear filtering and prediction problem. J. Basic Eng. 82, 35–45 (1960)CrossRefGoogle Scholar
  11. 11.
    Schmidt, S.: Applications of state-space methods of navigation problems. J. Adv. Control Syst. 3, 293–340 (1966)CrossRefGoogle Scholar
  12. 12.
    Julier S.J., Uhlmann. J.K.: Unscented filtering and nonlinear estimation. In: Proceedings of IEEE, vol. 93, pp. 401–422 (2004)Google Scholar
  13. 13.
    Khan, W., Klette, R.: Stereo accuracy for collision avoidance for varying collision trajectories. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 1259–1264 (2013)Google Scholar
  14. 14.
    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Haokun Geng
    • 1
  • Hsiang-Jen Chien
    • 2
  • Radu Nicolescu
    • 1
  • Reinhard Klette
    • 2
  1. 1.Department of Computer ScienceThe University of AucklandAucklandNew Zealand
  2. 2.School of Engineering, Computing and Mathematical SciencesAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations