Advertisement

Parallel Late Acceptance Hill-Climbing Algorithm for the Google Machine Reassignment Problem

  • Ayad TurkyEmail author
  • Nasser R. Sabar
  • Abdul Sattar
  • Andy Song
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9992)

Abstract

Google Machine Reassignment Problem (GMRP) is an optimisation problem proposed at ROADEF/EURO challenge 2012. The task of GMRP is to allocate cloud computing resources by reassigning a set of services to a set of machines while not violating any constraints. We propose an evolutionary parallel late acceptance hill-climbing algorithm (P-LAHC) for GMRP in this study. The aim is to improve the efficiency of search by escaping local optima. Our P-LAHC method involves multiple search processes. It utilises a population of solutions instead of a single solution. Each solution corresponds to one LAHC process. These processes work in parallel to improve the overall search outcome. These LAHC processes start with different initial individuals and follow distinct search paths. That reduces the chance of falling into a same local optima. In addition, mutation operators will apply when the search becomes stagnated for a certain period of time. This further reduces the chance of being trapped by a local optima. Our results on GMRP instances show that the proposed P-LAHC performed better than single threaded LAHC. Furthermore P-LAHC can outperform or at least be comparable to the state-of-the-art methods from the literature, indicating that P-LAHC is an effective search algorithm.

Keywords

Google Machine Reassignment Problem Optimisation Resource allocation Late Acceptance Hill-Climbing Parallel search Evolutionary algorithms 

References

  1. 1.
    ROADEF/EURO challenge: Machine reassignment (2011). http://challenge.roadef.org/2012/en/
  2. 2.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  3. 3.
    Brandt, F., Speck, J., Völker, M.: Constraint-based large neighborhood search for machine reassignment. Ann. Oper. Res. 242, 1–29 (2012)Google Scholar
  4. 4.
    Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling problems. In: PATAT 2008 Conference, Montreal, Canada (2008)Google Scholar
  5. 5.
    Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. University of Stirling. Technical report (2012)Google Scholar
  6. 6.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)CrossRefGoogle Scholar
  7. 7.
    Crainic, T.G., Toulouse, M.: Parallel meta-heuristics. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of metaheuristics, vol. 146, pp. 497–541. Springer, US (2010). doi: 10.1007/978-1-4419-1665-5_17 CrossRefGoogle Scholar
  8. 8.
    Domínguez, J., Alba, E.: Dealing with hardware heterogeneity: a new parallel search model. Natural Comput. 12(2), 179–193 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fonseca, G.H.G., Santos, H.G., Carrano, E.G.: Late acceptance hill-climbing for high school timetabling. J. Sched. 19, 1–13 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)CrossRefGoogle Scholar
  11. 11.
    Gavranović, H., Buljubašić, M., Demirović, E.: Variable neighborhood search for Google Machine Reassignment Problem. Electron. Notes Discrete Math. 39, 209–216 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Goerler, A., Schulte, F., Voß, S.: An application of late acceptance hill-climbing to the traveling purchaser problem. In: Pacino, D., Voß, S., Jensen, R.M. (eds.) ICCL 2013. LNCS, vol. 8197, pp. 173–183. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41019-2_13 CrossRefGoogle Scholar
  13. 13.
    Lopes, R., Morais, V.W.C., Noronha, T.F., Souza, V.A.A.: Heuristics and matheuristics for a real-life machine reassignment problem. Int. Trans. Oper. Res. 22(1), 77–95 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization for the traveling salesman problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 224–234. Springer, Heidelberg (2006). doi: 10.1007/11839088_20 CrossRefGoogle Scholar
  15. 15.
    Masson, R., Vidal, T., Michallet, J., Penna, P.H.V., Petrucci, V., Subramanian, A., Dubedout, H.: An iterated local search heuristic for multi-capacity bin packing and machine reassignment problems. Expert Syst. Appl. 40(13), 5266–5275 (2013)CrossRefGoogle Scholar
  16. 16.
    Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the machine reassignment problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 782–797. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33558-7_56 CrossRefGoogle Scholar
  17. 17.
    Özcan, E., Bykov, Y., Birben, M., Burke, E.K.: Examination timetabling using late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation, 2009. CEC 2009, pp. 997–1004. IEEE (2009)Google Scholar
  18. 18.
    Ritt, M.R.P.: An algorithmic study of the machine reassignment problem. PhD thesis, Universidade Federal do Rio Grande do Sul (2012)Google Scholar
  19. 19.
    Sabar, N.R., Song, A.: Grammatical evolution enhancing simulated annealing for the load balancing problem in cloud computing. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp. 997–1003. ACM (2016)Google Scholar
  20. 20.
    Sabar, N.R., Song, A., Zhang, M.: A variable local search based memetic algorithm for the load balancing problem in cloud computing. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016, Part I. LNCS, vol. 9597, pp. 267–282. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31204-0_18 CrossRefGoogle Scholar
  21. 21.
    Turky, A., Abdullah, S., McCollum, B., Sabar, N.R: An evolutionary hill climbing algorithm for dynamic optimization problems. In: The 6th Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA 2013), 27–30 August 2013Google Scholar
  22. 22.
    Turky, A., Sabar, N.R., Song, A.: An evolutionary simulating annealing algorithm for Google Machine Reassignment Problem. In: The 20th Asia-Pacific Symposium on Intelligent, Evolutionary Systems. Proceedings in Adaptation, Learning and Optimization. Springer Book Series (2016)Google Scholar
  23. 23.
    Verstichel, J., Berghe, G.V.: A late acceptance algorithm for the lock scheduling problem. In: Voß, S., Pahl, J., Schwarze, S. (eds.) Logistik Management, pp. 457–478. Physica, Heidelberg (2009). doi: 10.1007/978-3-7908-2362-2_23 CrossRefGoogle Scholar
  24. 24.
    Wang, Z., Lü, Z., Ye, T.: Multi-neighborhood local search optimization for machine reassignment problem. Comput. Oper. Res. 68, 16–29 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yuan, B., Zhang, C., Shao, X.: A late acceptance hill-climbing algorithm for balancing two-sided assembly lines with multiple constraints. J. Intell. Manuf. 26(1), 159–168 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ayad Turky
    • 1
    Email author
  • Nasser R. Sabar
    • 2
  • Abdul Sattar
    • 3
  • Andy Song
    • 1
  1. 1.School of Computer Science and I.T.RMIT UniversityMelbourneAustralia
  2. 2.Queensland University of TechnologyBrisbaneAustralia
  3. 3.Griffith UniversityBrisbaneAustralia

Personalised recommendations