Advertisement

Data Correlation and Comparison from Multiple Sensors Over a Coral Reef with a Team of Heterogeneous Aquatic Robots

  • Alberto Quattrini Li
  • Ioannis Rekleitis
  • Sandeep Manjanna
  • Nikhil Kakodkar
  • Johanna Hansen
  • Gregory Dudek
  • Leonardo Bobadilla
  • Jacob Anderson
  • Ryan N. Smith
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 1)

Abstract

This paper presents experimental insights from the deployment of an ensemble of heterogeneous autonomous sensor systems over a shallow coral reef. Visual, inertial, GPS, and ultrasonic data collected are compared and correlated to produce a comprehensive view of the health of the coral reef. Coverage strategies are discussed with a focus on the use of informed decisions to maximize the information collected during a fixed period of time.

Keywords

Coral Reef Inertial Measurement Unit Autonomous Underwater Vehicle Coral Bleaching Zernike Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors would like to thank the generous support of the Google Faculty Research Award and the National Science Foundation grants (NSF 0953503, 1513203, 1526862, 1637876).

References

  1. 1.
    IPCC: Climate Change 2007: The physical science basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H. (eds.) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (2007)Google Scholar
  2. 2.
    Shkurti, F., Xu, A., Meghjani, M., Higuera, J.C.G., Girdhar, Y., Giguere, P., Dey, B.B., Li, J., Kalmbach, A., Prahacs, C., Turgeon, K., Rekleitis, I., Dudek, G.: Multi-domain monitoring of marine environments using a heterogeneous robot team. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Portugal, pp. 1447–1753 (2012)Google Scholar
  3. 3.
    Das, J., Py, F., Maughan, T., Oreilly, T., Messie, M., Ryan, J., Rajan, K., Sukhatme, G.S.: Simultaneous tracking and sampling of dynamic oceanographic features with autonomous underwater vehicles and lagrangian drifters. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, pp. 541–555. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-28572-1_37 CrossRefGoogle Scholar
  4. 4.
    Meghjani, M., Shkurti, F., Higuera, J.C.G., Kalmbach, A., Whitney, D., Dudek, G.: Asymmetric rendezvous search at sea. In: Canadian Conference on Computer and Robot Vision (CRV), pp. 175–180. IEEE (2014)Google Scholar
  5. 5.
    Jouffroy, J., Zhou, Q., Zielinski, O.: Towards selective tidal-stream transport for Lagrangian profilers. In: MTS/IEEE Oceans, Kona, HI (2011)Google Scholar
  6. 6.
    Jouffroy, J., Zhou, Q., Zielinski, O.: On active current selection for Lagrangian drifters. Robotics and Autonomous Systems (2012)Google Scholar
  7. 7.
    Smith, R.N., Huynh, V.T.: Controlling buoyancy-driven profiling floats for applications in ocean observation. IEEE J. Oceanic Eng. 39(3), 571–586 (2014)CrossRefGoogle Scholar
  8. 8.
    Boydstun, D., Farich III, M., J.M., Rubinson, S., Smith, Z., Rekleitis, I.: Drifter sensor network for environmental monitoring. In: 12th Conference on Computer Robot Vision, Halifax, Nova Scotia, Canada, pp. 16–22, June 2015Google Scholar
  9. 9.
    Xanthidis, M., Quattrini Li, A., Rekleitis, I.: Shallow coral reef surveying by inexpensive drifters. In: MTS/IEEE Oceans Shanghai, pp. 1–9, April 2016Google Scholar
  10. 10.
    Albrecht, R.: Kingfisher ASV (2015). http://www.clearpathrobotics.com/kingfisher/
  11. 11.
    YSI Incorporated: YSI EcoMapper (2015). https://www.ysi.com/ecomapper
  12. 12.
    Xu, A., Viriyasuthee, C., Rekleitis, I.: Efficient complete coverage of a known arbitrary environment with applications to aerial operations. Auton. Robots 36(4), 365–381 (2014)CrossRefGoogle Scholar
  13. 13.
    Manjanna, S., Nikhil Kakodkar, M.M., Dudek, G.: Efficient terrain driven coral coverage using Gaussian processes for mosaic synthesis. In: Computer Robot Vision (CRV) (2016)Google Scholar
  14. 14.
    Johnson-Roberson, M., Pizarro, O., Williams, S., Mahon, I.: Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J. Field Robot. 27(1), 21–51 (2010)CrossRefGoogle Scholar
  15. 15.
    Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)CrossRefGoogle Scholar
  16. 16.
    Cummins, M., Newman, P.: Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. 30(9), 1100–1123 (2011). doi: 10.1177/0278364910385483 CrossRefGoogle Scholar
  17. 17.
    Quattrini Li, A., Coskun, A., Doherty, S.M., Ghasemlou, S., Jagtap, A.S., Modasshir, M., Rahman, S., Singh, A., Xanthidis, M., O’Kane, J.M., Rekleitis, I.: Vision-based shipwreck mapping: on evaluating features quality and open source state estimation packages. In: MTS/IEEE OCEANS Monterey, September 2016, acceptedGoogle Scholar
  18. 18.
    Smith, R.N., Dunbabin, M.: Controlled drift: an investigation into the controllability of underwater vehicles with minimal actuation. In: Australasian Conference on Robotics and Automation, December 2011Google Scholar
  19. 19.
    Connolly, C.: The determination of next best views. In: IEEE International Conference on Robotics and Automation, pp. 432–435 (1985)Google Scholar
  20. 20.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  21. 21.
    Torabi, L., Gupta, K.: An autonomous six-DOF eye-in-hand system for in situ 3D object modeling. Int. J. Robot. Res. 31(1), 82–100 (2012)CrossRefGoogle Scholar
  22. 22.
    McKinnon, D., Upcroft, B., Smith, R.N.: Towards automated and in-situ, near-real time 3-D reconstruction of coral reef environments. In: MTS/IEEE Oceans, Kona, Hawaii, September 2011Google Scholar
  23. 23.
    McKinnon, D., Smith, R.N., Upcroft, B.: A semi-local method for iterative depth-map refinement. In: IEEE International Conference on Robotics and Automation (ICRA), May 2012Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alberto Quattrini Li
    • 1
  • Ioannis Rekleitis
    • 1
  • Sandeep Manjanna
    • 2
  • Nikhil Kakodkar
    • 2
  • Johanna Hansen
    • 2
  • Gregory Dudek
    • 2
  • Leonardo Bobadilla
    • 3
  • Jacob Anderson
    • 4
  • Ryan N. Smith
    • 4
  1. 1.University of South CarolinaColumbiaUSA
  2. 2.McGill UniversityMontrealCanada
  3. 3.Florida International UniversityMiamiUSA
  4. 4.Fort Lewis CollegeDurangoUSA

Personalised recommendations