Advertisement

Improving the Accuracy of Stereo Visual Odometry Using Visual Illumination Estimation

  • Lee Clement
  • Valentin Peretroukhin
  • Jonathan Kelly
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 1)

Abstract

In the absence of reliable and accurate GPS, visual odometry (VO) has emerged as an effective means of estimating the egomotion of robotic vehicles. Like any dead-reckoning technique, VO suffers from unbounded accumulation of drift error over time, but this accumulation can be limited by incorporating absolute orientation information from, for example, a sun sensor. In this paper, we leverage recent work on visual outdoor illumination estimation to show that estimation error in a stereo VO pipeline can be reduced by inferring the sun position from the same image stream used to compute VO, thereby gaining the benefits of sun sensing without requiring a dedicated sun sensor or the sun to be visible to the camera. We compare sun estimation methods based on hand-crafted visual cues and Convolutional Neural Networks (CNNs) and demonstrate our approach on a combined 7.8 Km of urban driving from the popular KITTI dataset, achieving up to a 43 % reduction in translational average root mean squared error (ARMSE) and a 59 % reduction in final translational drift error compared to pure VO alone.

Keywords

Visual Odometry Illumination estimation Sun sensing Robot navigation 

References

  1. 1.
    Agarwal, S., Mierle, K.: Ceres solver. http://ceres-solver.org
  2. 2.
    Cheng, Y., Maimone, M.W., Matthies, L.: Visual odometry on the mars exploration rovers. IEEE Robot. Autom. Mag. 13(2), 54–62 (2006)CrossRefGoogle Scholar
  3. 3.
    Eisenman, A.R., Liebe, C.C., Perez, R.: Sun sensing on the mars exploration rovers. In: Aerospace Conference Proceedings, vol. 5, pp. 5-2249–5-2262. IEEE (2002)Google Scholar
  4. 4.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Furgale, P., Barfoot, T.D.: Visual teach and repeat for long-range rover autonomy. J. Field Robot. 27(5), 534–560 (2010)CrossRefGoogle Scholar
  6. 6.
    Furgale, P., Enright, J., Barfoot, T.: Sun sensor navigation for planetary rovers. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1631–1647 (2011)CrossRefGoogle Scholar
  7. 7.
    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)CrossRefGoogle Scholar
  8. 8.
    Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time. In: Proceedings of Intelligent Vehicles Symposium (IV), pp. 963–968. IEEE, June 2011Google Scholar
  9. 9.
    Kelly, J., Saripalli, S., Sukhatme, G.S.: Combined visual and inertial navigation for an unmanned aerial vehicle. In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol. 42, pp. 255–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Lalonde, J.-F., Efros, A.A., Narasimhan, S.G.: Estimating the natural illumination conditions from a single outdoor image. Int. J. Comput. Vis. 98(2), 123–145 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lambert, A., Furgale, P., Barfoot, T.D., Enright, J.: Field testing of visual odometry aided by a sun sensor and inclinometer. J. Field Robot. 29(3), 426–444 (2012)CrossRefGoogle Scholar
  12. 12.
    Ma, W.-C., Wang, S., Brubaker, M.A., Fidler, S., Urtasun, R.: Find your way by observing the sun and other semantic cues. 23 June 2016. arXiv:1606.07415
  13. 13.
    Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the mars exploration rovers. J. Field Robot. 24(3), 169–186 (2007)CrossRefGoogle Scholar
  14. 14.
    Olson, C.F., Matthies, L.H., Schoppers, M., Maimone, M.W.: Rover navigation using stereo ego-motion. Robot. Auton. Syst. 43(4), 215–229 (2003)CrossRefGoogle Scholar
  15. 15.
    Perez, R., Seals, R., Michalsky, J.: All-weather model for sky luminance distribution. Solar Energy 50(3), 235–245 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lee Clement
    • 1
  • Valentin Peretroukhin
    • 1
  • Jonathan Kelly
    • 1
  1. 1.Institute for Aerospace StudiesUniversity of TorontoTorontoCanada

Personalised recommendations