Advertisement

RIKEN MetaDatabase: A Database Platform as a Microcosm of Linked Open Data Cloud in the Life Sciences

  • Norio KobayashiEmail author
  • Kai Lenz
  • Hiroshi Masuya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10055)

Abstract

The amount and heterogeneity of life-science datasets published on the Web have considerably increased recently. However, biomedical scientists face numerous serious difficulties in finding, using and publishing useful databases. In order to solve these issues, we developed a Resource Description Framework-based database platform, called RIKEN MetaDatabase, which allows biologists to easily develop, publish and integrate databases. The platform manages metadata of both research data and individual data described with standardised vocabularies and ontologies, and has a simple browser-based graphical user interface for viewing data including tabular and graphical views. The platform was released in April 2015, and 110 databases including mammalian, plant, bioresource and image databases with 21 ontologies have been published through this platform as of July 2016. This paper describes the technical knowledge obtained through the development and operation of RIKEN MetaDatabase as a challenge for accelerating life-science data distribution promotion.

Keywords

Semantic web Database cloud platform Database integration Life sciences 

References

  1. 1.
    Vasilevsky, N., Johnson, T., Corday, K., Torniai, C., Brush, M., Segerdell, E., Wilson, M., Shaffer, C., Robinson, D., Haendel, M.: Research resources: curating the new eagle-i discovery system. Database (Oxford), 20:2012 (2012)Google Scholar
  2. 2.
    Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J Biomed. Inform. 41(5), 706–716 (2008)CrossRefGoogle Scholar
  3. 3.
    Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C., Tudorache, T., Musen, M.A.: BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res. 39(Web Server issue): W541–W545 (2011)Google Scholar
  4. 4.
    Wolstencroft, K., Owen, S., Horridge, M., Krebs, O., Mueller, W., Snoep, J.L., du Preez, F., Goble, C.: RightField: embedding ontology annotation in spreadsheets. Bioinformatics 27(14), 2021–2012 (2011)CrossRefGoogle Scholar
  5. 5.
    The FANTOM Consortium and the RIKEN PMI and CLST (DGT): A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014)Google Scholar
  6. 6.
    Ichikawa, T., Nakazawa, M., Kawashima, M., Iizumi, H., Kuroda, H., Kondou, Y., Tsuhara, Y., Suzuki, K., Ishikawa, A., Seki, M., Fujita, M., Motohashi, R., Nagata, N., Takagi, T., Shinozaki, K., Matsui, M.: The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J. 45, 974–985 (2006)CrossRefGoogle Scholar
  7. 7.
    Sugahara, M., Asada, Y., Shimada, H., Taka, H., Kunishima, N.: HATODAS II: heavy-atom database system with potentiality scoring. J. Appl. Crystallogr. 42, 540–544 (2009)CrossRefGoogle Scholar
  8. 8.
    Yoshiki, A., Ike, F., Mekada, K., Kitaura, Y., Nakata, H., Hiraiwa, N., Mochida, K., Ijuin, M., Kadota, M., Murakami, A., Ogura, A., Abe, K., Moriwaki, K., Obata, Y.: The mouse resources at the RIKEN BioResource center. Exp. Anim. 58(2), 85–96 (2009)CrossRefGoogle Scholar
  9. 9.
    Nakamura, Y.: Bio-resource of human and animal-derived cell materials. Exp. Anim. 59(1), 1–7 (2010)CrossRefGoogle Scholar
  10. 10.
    Yokoyama, K.K., Murata, T., Pan, J., Nakade, K., Kishikawa, S., Ugai, H., Kimura, M., Kujime, Y., Hirose, M., Masuzaki, S., Yamasaki, T., Kurihara, C., Okubo, M., Nakano, Y., Kusa, Y., Yoshikawa, A., Inabe, K., Ueno, K., Obata, Y.: Genetic materials at the gene engineering division. RIKEN BioResource Center. Exp. Anim. 59(2), 115–124 (2010)Google Scholar
  11. 11.
    Yamaguchi, A., Kozaki, K., Lenz, K., Wu, H., Yamamoto, Y., Kobayashi, N.: Efficiently finding paths between classes to build a SPARQL query for life-science databases. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S. (eds.) JIST 2015. LNCS, vol. 9544, pp. 321–330. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31676-5_24 CrossRefGoogle Scholar
  12. 12.
    Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: PhenomeNET: a whole-phenome approach to disease gene discovery. Nucleic Acids Res. 39(18), 119 (2011)CrossRefGoogle Scholar
  13. 13.
    Robinson, P.N., Khler, S., Oellrich, A.: Sanger Mouse Genetics Project, Wang, K., Mungall, C.J., Lewis, S.E., Washington, N., Bauer, S., Seelow, D., Krawitz, P., Gilissen, C., Haendel, M., Smedley, D.: Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res. 24(2), 340–348 (2014)Google Scholar
  14. 14.
    Dickinson, M.E., Flenniken, A.M., Ji, X., Teboul, L., Wong, M.D., White, J.K., Meehan, T.F., Weninger, W.J., Westerberg, H., Adissu, H., et al.: High-throughput discovery of novel developmental phenotypes. Nature 537(7621), 508–514 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Advanced Center for Computing and Communication (ACCC), RIKENSaitamaJapan
  2. 2.BioResource Center (BRC), RIKENIbarakiJapan
  3. 3.RIKEN CLST-JEOL Collaboration Center, RIKENKobeJapan

Personalised recommendations