Monitoring and Automating Factories Using Semantic Models

  • Niklas PetersenEmail author
  • Michael Galkin
  • Christoph Lange
  • Steffen Lohmann
  • Sören Auer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10055)


Keeping factories running at any time is a critical task for every manufacturing enterprise. Optimizing the flows of goods and services inside and between factories is a challenge that attracts much attention in research and business. The idea to fully describe a factory in a digital form to improve decision making is called a virtual factory. While promising virtual factory frameworks have been proposed, their semantic models lack depth and suffer from limited expressiveness. We propose an enhanced semantic model of a factory, which enables views spanning from the high level of supply chains to the low level of machines on the shop floor. The model includes a mapping to relational production databases to support federated queries on different legacy systems in use. We evaluate the model in a production line use case, demonstrating that it can be used for typical factory tasks, such as assembly line identification or machine availability checks.


Supply Chain Assembly Line SPARQL Query Enterprise Resource Planning System Manufacture Execution System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the German Federal Ministry of Education and Research (BMBF) in the context of the projects LUCID (grant no. 01IS14019C), SDI-X (no. 01IS15035C) and Industrial Data Space (no. 01IS15054).


  1. 1.
    Ameri, F., Patil, L.: Digital manufacturing market: a semantic web-based framework for agile supply chain deployment. J. Intell. Manuf. 23(5), 1817–1832 (2012)CrossRefGoogle Scholar
  2. 2.
    Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int. J. Mech. Ind. Sci. Eng. 8(1), 37–44 (2014)Google Scholar
  3. 3.
    Büscher, C., Voet, H., Krunke, M., Burggräf, P., Meisen, T., Jeschke, S.: Semantic information modelling for factory planning projects. Procedia CIRP 41, 478–483 (2016)CrossRefGoogle Scholar
  4. 4.
    Chen, R.S., Tu, M.A.: Development of an agent-based system for manufacturing control and coordination with ontology and rfid technology. Expert Syst. Appl. 36(4), 7581–7593 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Halilaj, L., Petersen, N., Grangel-González, I., Lange, C., Auer, S., Coskun, G., Lohmann, S.: Vocol: an integrated environment to support version-controlled vocabulary development. In: 20th International Conference on Knowledge Engineering and Knowledge Management. Springer Verlag (2016, in print)Google Scholar
  6. 6.
    Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios: a literature review. Technische Universität Dortmund, Dortmund (2015)Google Scholar
  7. 7.
    Kim, K.Y., Manley, D.G., Yang, H.: Ontology-based assembly design and information sharing for collaborative product development. Comput. Aided Des. 38(12), 1233–1250 (2006)CrossRefGoogle Scholar
  8. 8.
    Newman, D., Gall, N., Lapkin, A.: Gartner defines enterprise information architecture. Gartner Group (2008)Google Scholar
  9. 9.
    Nielsen, J.: Response times: The 3 important limits. Usability Engineering (1993)Google Scholar
  10. 10.
    Petersen, N., Grangel-González, I., Coskun, G., Auer, S., Frommhold, M., Tramp, S., Lefrançois, M., Zimmermann, A.: SCORVoc: vocabulary-based information integration and exchange in supply networks. In: 10th International Conference on Semantic Computing (ICSC 2016), pp. 132–139. IEEE (2016)Google Scholar
  11. 11.
    Petersen, N., Lange, C., Auer, S., Frommhold, M., Tramp, S.: Towards federated, semantics-based supply chain analytics. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp. 436–447. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-39426-8_34 CrossRefGoogle Scholar
  12. 12.
    Sacco, M., Pedrazzoli, P., Terkaj, W.: VFF: virtual factory framework. In: Proceedings of 16th International Conference on Concurrent Enterprising (ICE 2010), pp. 21–23. IEEE (2010)Google Scholar
  13. 13.
    Terkaj, W., Urgo, M.: Virtual factory data model to support performance evaluation of production systems. In: Proceedings of the Workshop on Ontology and Semantic Web for Manufacturing (OSEMA 2012). CEUR-WS, vol. 886, pp. 24–27 (2012)Google Scholar
  14. 14.
    Upton, D.: The real virtual factory. Harvard Bus. Rev. 74(4), 123–133 (1996)Google Scholar
  15. 15.
    Uschold, M., Gruninger, M., et al.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11(2), 93–136 (1996)CrossRefGoogle Scholar
  16. 16.
    Want, R.: An introduction to RFID technology. IEEE Pervasive Comput. 5(1), 25–33 (2006)CrossRefGoogle Scholar
  17. 17.
    Zuehlke, D.: SmartFactory–towards a factory-of-things. Annu. Rev. Control 34(1), 129–138 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Niklas Petersen
    • 1
    • 2
    Email author
  • Michael Galkin
    • 1
    • 2
    • 3
  • Christoph Lange
    • 1
    • 2
  • Steffen Lohmann
    • 2
  • Sören Auer
    • 1
    • 2
  1. 1.University of BonnBonnGermany
  2. 2.Fraunhofer IAISSankt AugustinGermany
  3. 3.ITMO UniversitySaint PetersburgRussia

Personalised recommendations