Inquiry into RDF and OWL Semantics

  • Seiji KoideEmail author
  • Hideaki Takeda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10055)


The purpose of this paper is to present the higher order formalization of RDF and OWL with setting up ontological meta-modeling criteria through the discussion of Russell’s Ramified Type Theory, which was developed in order to solve Russell Paradox appeared at the last stage in the history of set theory. This paper briefly summarize some of set theories, and reviews the RDF and OWL Semantics with higher order classes from the view of Russell’s Principia Mathematica. Then, a set of criteria is proposed for ontological meta-modeling. Several examples of meta-modeling, including sound ones and unsound ones, are discussed and some of solutions are demonstrated according to the meta-modeling criteria proposed.


RDF semantics OWL semantics Set theory Principia mathematica KIF Membership loop Higher order class Meta-modeling 


  1. Aczel, A.D.: The Mystery of the Aleph, Four Walls Eight Windows (2000)Google Scholar
  2. Boolos, G.S.: The Iterative Conception of Set. J. Philosophy 68–8, 215–231 (1971)CrossRefGoogle Scholar
  3. Bourbaki, N.: Éléments de Mathématique, Chapitres 1 et 2. Hermann (1966)Google Scholar
  4. Cantor, G.: Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische Annalen, Bd.46, S.481-512 (1895). Contributions to the Founding of the Theory of Transfinite Numbers, Dover (1955)Google Scholar
  5. Cantor, G.: Letter to Dedekind (1899) in “From Frege to Gödel A Source Book in Mathematical Logic, 1879–1931”. In: van Heijenoort, J. (ed.). Harvard (1967)Google Scholar
  6. Doets, H.C.: Zermelo-Fraenkel Set Theory (2002).
  7. Hutton, G.: Programming in Haskell. Cambridge University Press, New York (2007)CrossRefzbMATHGoogle Scholar
  8. Hayes, P.: RDF Semantics. W3C Recommendation (2004).
  9. Kamareddine, F., Laan, T., Nederpelt, R.: A Modern Perspective on Type Theory. Kluwer, New York (2004)zbMATHGoogle Scholar
  10. Genesereth, M.R., Fikes, R.E.: Knowledge Interchange Format version 3.0 Reference Manual (1994).
  11. Koide, S., Takeda, H.: Common Languages for Web Semantics, Evaluation of Novel Approaches to Software Engineering. In: Communications in Computer and Information Science, vol. 230, pp. 148–162. Springer (2011)Google Scholar
  12. Motik, B.: On the properties of metamodeling in OWL. J. Logic Comput. 17(4), 617–637 (2007). doi: 10.1093/logcom/exm027 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL web ontology language semantics and abstract syntax Sect. 5. RDF-Compatible Model-Theoretic Semantics (2004a).
  14. Patel-Schneider, P.F., Horrocks, I.: OWL web ontology language semantics and abstract syntax Sect. 3. Direct Model-Theoretic Semantics (2004b).
  15. Schneider, M.: OWL 2 web ontology language RDF-based semantics, 2nd edn. (2014).
  16. van Heijenoort, J. (ed.): Russell, B.: Letter to Frege (1902) in “From Frege to Gödel A Source Book in Mathematical Logic, 1879–1931”. Harvard (1967)Google Scholar
  17. Whitehead, A.N., Russell, B.: Principia Mathematica, vol. 1. Merchant Books (1910)Google Scholar
  18. Graham, S.: Re-examining Russell’s paralysis: ramified type-theory and Wittgenstein’s objection to Russell’s theory of judgment. J. Bertrand Russell Stud. 23, 5–26 (2003)Google Scholar
  19. Tarski, A.: Introduction to Logic. Dover (1946/1995). This book is an extended edition of the book title “On Mathematical Logic and Deductive Method,” appeared at 1936 in Polish and 1937 in GermanGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.Ontolonomy, LLC.YokohamaJapan

Personalised recommendations