Computing NodeTrix Representations of Clustered Graphs

  • Giordano Da Lozzo
  • Giuseppe Di Battista
  • Fabrizio Frati
  • Maurizio Patrignani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

NodeTrix representations are a popular way to visualize clustered graphs; they represent clusters as adjacency matrices and inter-cluster edges as curves connecting the matrix boundaries. We study the complexity of constructing NodeTrix representations focusing on planarity testing problems, and we show several \(\mathbb {NP}\)-completeness results and some polynomial-time algorithms.

References

  1. 1.
    CiteVis: Visualizing citations among InfoVis conference papers. http://www.cc.gatech.edu/gvu/ii/citevis
  2. 2.
  3. 3.
    NodeTrix Representations: a proof-of-concept editor. http://www.dia.uniroma3.it/~dalozzo/projects/matrix
  4. 4.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Relaxing the constraints of clustered planarity. Comput. Geom.: Theory Appl. 48(2), 42–75 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Intersection-link representations of graphs. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 217–230. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27261-0_19 CrossRefGoogle Scholar
  6. 6.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance of being proper (in clustered-level planarity and T-level planarity). Theor. Comput. Sci. 571, 1–9 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned book embedding problems. Theor. Comput. Sci. 575, 71–89 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Batagelj, V., Brandenburg, F.J., Didimo, W., Liotta, G., Palladino, P., Patrignani, M.: Visual analysis of large graphs using \((x, y)\)-clustering and hybrid visualizations. IEEE TVCG 17(11), 1587–1598 (2011)Google Scholar
  10. 10.
    Chimani, M., Battista, G., Frati, F., Klein, K.: Advances on testing c-planarity of embedded flat clustered graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 416–427. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45803-7_35 Google Scholar
  11. 11.
    Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-connected clustered graphs. J. Graph Algorithms Appl. 12(2), 225–262 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing nodetrix representations of clustered graphs. CoRR abs/1608.08952v1 (2016). http://arxiv.org/abs/1608.08952v1
  13. 13.
    Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. J. Graph Algorithms Appl. 13(3), 349–378 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995). doi:10.1007/3-540-60313-1_145 CrossRefGoogle Scholar
  15. 15.
    Gutwenger, C., Klein, K., Mutzel, P.: Planarity testing and optimal edge insertion with embedding constraints. J. Graph Algorithms Appl. 12(1), 73–95 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Henry, N., Bezerianos, A., Fekete, J.D.: Improving the readability of clustered social networks using node duplication. IEEE TVCG 14(6), 1317–1324 (2008)Google Scholar
  17. 17.
    Henry, N., Fekete, J.D., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)CrossRefGoogle Scholar
  18. 18.
    Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Spinrad, J.P.: Recognition of circle graphs. J. Algorithms 16(2), 264–282 (1994)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Unger, W.: On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988). doi:10.1007/BFb0035832 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Giordano Da Lozzo
    • 1
  • Giuseppe Di Battista
    • 1
  • Fabrizio Frati
    • 1
  • Maurizio Patrignani
    • 1
  1. 1.Roma Tre UniversityRomeItaly

Personalised recommendations