Advertisement

Peacock Bundles: Bundle Coloring for Graphs with Globality-Locality Trade-Off

  • Jaakko Peltonen
  • Ziyuan Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

Bundling of graph edges (node-to-node connections) is a common technique to enhance visibility of overall trends in the edge structure of a large graph layout, and a large variety of bundling algorithms have been proposed. However, with strong bundling, it becomes hard to identify origins and destinations of individual edges. We propose a solution: we optimize edge coloring to differentiate bundled edges. We quantify strength of bundling in a flexible pairwise fashion between edges, and among bundled edges, we quantify how dissimilar their colors should be by dissimilarity of their origins and destinations. We solve the resulting nonlinear optimization, which is also interpretable as a novel dimensionality reduction task. In large graphs the necessary compromise is whether to differentiate colors sharply between locally occurring strongly bundled edges (“local bundles”), or also between the weakly bundled edges occurring globally over the graph (“global bundles”); we allow a user-set global-local tradeoff. We call the technique “peacock bundles”. Experiments show the coloring clearly enhances comprehensibility of graph layouts with edge bundling.

Keywords

Graph visualization Network data Machine learning Dimensionality reduction 

References

  1. 1.
    Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer Series in Statistics, 2nd edn. Springer, New York (2005)zbMATHGoogle Scholar
  2. 2.
    Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  3. 3.
    Casaca, W., et al.: Colorization by multidimensional projection. In: Proceedings of SIBGRAPI 2012, pp. 32–38. IEEE (2012)Google Scholar
  4. 4.
    Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Trans. Vis. Comput. Graph. 14(6), 1277–1284 (2008)CrossRefGoogle Scholar
  5. 5.
    Daniels, J., Anderson, E.W., Nonato, L.G., Silva, C.T., et al.: Interactive vector field feature identification. IEEE Trans. Vis. Comput. Graph. 16(6), 1560–1568 (2010)CrossRefGoogle Scholar
  6. 6.
    Dwyer, T., Marriott, K., Wybrow, M.: Integrating edge routing into force-directed layout. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 8–19. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70904-6_3 CrossRefGoogle Scholar
  7. 7.
    Ersoy, O., Hurter, C., Paulovich, F.V., Cantaneira, G., Telea, A.: Skeleton-based edge bundling for graph visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2364–2373 (2011)CrossRefGoogle Scholar
  8. 8.
    Gansner, E.R., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge bundling for visualizing large graphs. In: Proceedings of PacificVis 2011, pp. 187–194. IEEE (2011)Google Scholar
  9. 9.
    Gibson, H., Faith, J., Vickers, P.: A survey of two-dimensional graph layout techniques for information visualisation. Info. Vis. 12(3–4), 324–357 (2013)CrossRefGoogle Scholar
  10. 10.
    Grossman, T., Balakrishnan, R.: The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor’s activation area. In: Proceedings of CHI 2005, pp. 281–290. ACM (2005)Google Scholar
  11. 11.
    Heer, J.: Flare (2009). https://git.io/v6buH
  12. 12.
    Heer, J., Stone, M.: Color naming models for color selection, image editing and palette design. In: Proceedings of CHI 2012 (2012)Google Scholar
  13. 13.
    Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)CrossRefGoogle Scholar
  14. 14.
    Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graph. Forum 28(3), 983–990 (2009)CrossRefGoogle Scholar
  15. 15.
    Hu, Y., Shi, L.: A coloring algorithm for disambiguating graph and map drawings. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 89–100. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45803-7_8 Google Scholar
  16. 16.
    Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation. Comput. Graph. Forum 31(3pt1), 865–874 (2012)CrossRefGoogle Scholar
  17. 17.
    Luo, S.J., Liu, C.L., Chen, B.Y., Ma, K.L.: Ambiguity-free edge-bundling for interactive graph visualization. IEEE Trans. Vis. Comput. Graph. 18(5), 810–821 (2012)CrossRefGoogle Scholar
  18. 18.
    Parkkinen, J., Nybo, K., Peltonen, J., Kaski, S.: Graph visualization with latent variable models. In: Proceedings of MLG 2010, pp. 94–101. ACM (2010)Google Scholar
  19. 19.
    Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving layered graph layouts with edge bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 329–340. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18469-7_30 CrossRefGoogle Scholar
  20. 20.
    Sugar, C.: d3.forcebundle (2016). https://git.io/v6GgL
  21. 21.
    Telea, A., Ersoy, O.: Image-based edge bundles: simplified visualization of large graphs. Comput. Graph. Forum 29(3), 843–852 (2010)CrossRefGoogle Scholar
  22. 22.
    Zhou, H., Xu, P., Yuan, X., Qu, H.: Edge bundling in information visualization. Tsinghua Sci. Technol. 18(2), 145–156 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Helsinki Institute for Information Technology HIIT, Department of Computer ScienceAalto UniversityEspooFinland
  2. 2.School of Information SciencesUniversity of TampereTampereFinland

Personalised recommendations