Offline Drawing of Dynamic Trees: Algorithmics and Document Integration

  • Malte Skambath
  • Till Tantau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)


While the algorithmic drawing of static trees is well-understood and well-supported by software tools, creating animations depicting how a tree changes over time is currently difficult: software support, if available at all, is not integrated into a document production workflow and algorithmic approaches only rarely take temporal information into consideration. During the production of a presentation or a paper, most users will visualize how, say, a search tree evolves over time by manually drawing a sequence of trees. We present an extension of the popular Open image in new window typesetting system that allows users to specify dynamic trees inside their documents, together with a new algorithm for drawing them. Running Open image in new window on the documents then results in documents in the svg format with visually pleasing embedded animations. Our algorithm produces animations that satisfy a set of natural aesthetic criteria when possible. On the negative side, we show that one cannot always satisfy all criteria simultaneously and that minimizing their violations is NP-complete.


  1. 1.
    Adelson-Velsky, G.M., Landis, E.M.: An algorithm for the organization of information. Dokl. Akad. Nauk USSR 3(2), 1259–1263 (1962)Google Scholar
  2. 2.
    Archambault, D., Purchase, H., Pinaud, B.: Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Trans. Visual. Comput. Graph. 17(4), 539–552 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Archambault, D., Purchase, H.C.: The mental map and memorability in dynamic graphs. In: Proceedings of Visualization Symposium (PacificVis) 2012, pp. 89–96. IEEE Press (2012)Google Scholar
  4. 4.
    Bartram, L., Ware, C.: Filtering and brushing with motion. Inf. Visual. 1(1), 66–79 (2002)CrossRefGoogle Scholar
  5. 5.
    Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing dynamic graphs. In: State of the Art Reports of the 16th Eurographics Conference on Visualization, EuroVis 2014, pp. 83–103. Eurographics Association (2014)Google Scholar
  6. 6.
    Brüggemann-Klein, A., Wood, D.: Drawing trees nicely with TeX. Electron. Publishing 2(2), 101–115 (1989)Google Scholar
  7. 7.
    Bulterman, D., Jansen, J., Cesar, P., Mullender, S., Hyche, E., DeMeglio, M., Quint, J., Kawamura, H., Weck, D., García Pañeda, X., Melendi, D., Cruz-Lara, S., Hanclik, M., Zucker, D.F., Michel, T.: Synchronized multimedia integration language (SMIL 3.0), W3C Recommendation 01 December 2008. Technical report REC-SMIL3-20081201, The World Wide Web Consortium (W3C) (2008).
  8. 8.
    Burch, M., Beck, F., Weiskopf, D.: Radial edge splatting for visualizing dynamic directed graphs. In: Proceedings of the International Conference on Computer Graphics Theory and Applications, IVAPP 2012, pp. 603–612. SciTe Press (2012)Google Scholar
  9. 9.
    Burch, M., Diehl, S.: TimeRadarTrees: visualizing dynamic compound digraphs. Comput. Graph. Forum 27(3), 823–830 (2008)CrossRefGoogle Scholar
  10. 10.
    Chimani, M., Gutwenger, C., Jünger, M., Klein, K., Mutzel, P., Schulz, M.: The open graph drawing framework. In: Poster at the 15th International Symposium on Graph Drawing 2007 (GD 2007) (2007)Google Scholar
  11. 11.
    Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: Dynamic graph drawings: trees, series-parallel digraphs, and planar st-digraphs. SIAM J. Comput. 24(5), 970–1001 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G., Bertolazzi, P.: A framework for dynamic graph drawing. In: Proceedings of the 8th Annual Symposium on Computational Geometry, SCG 1992, pp. 261–270. ACM Press (1992)Google Scholar
  13. 13.
    Dahlström, E., Dengler, P., Grasso, A., Lilley, C., McCormack, C., Schepers, D., Watt, J.: Scalable vector graphics (SVG) 1.1 (2nd edn. ), W3C Recommendation 16 August 2011. Technical report REC-SVG11-20110816, The World Wide Web Consortium (W3C) (2011).
  14. 14.
    Diehl, S., Görg, C., Kerren, A.: Foresighted graphlayout. Technical report A/02/2000, FB Informatik, University Saarbrücken, Saarbrücken, Germany (2000)Google Scholar
  15. 15.
    Diehl, S., Görg, C., Kerren, A.: Preserving the mental map using foresighted layout. In: Proceedings of the 3rd Joint Eurographics-IEEE TCVG Conference on Visualization, vol. 1, pp. 175–184. The Eurographics Association (2001)Google Scholar
  16. 16.
    Eades, P., Sugiyama, K.: How to draw a directed graph. J. Inf. Process. 13(4), 424–436 (1990)zbMATHGoogle Scholar
  17. 17.
    Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz and dynagraph - static and dynamic graph drawing tools. In: Junger, M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 127–148. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Eppstein, D.: Trees in TeX. TUGboat 6(1), 31–35 (1985)Google Scholar
  19. 19.
    Federico, P., Aigner, W., Miksch, S., Windhager, F., Zenk, L.: A visual analytics approach to dynamic social networks. In: Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies, i-KNOW 2011, pp. 47:1–47:8. ACM Press (2011)Google Scholar
  20. 20.
    Görg, C., Birke, P., Pohl, M., Diehl, S.: Dynamic graph drawing of sequences of orthogonal and hierarchical graphs. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 228–238. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31843-9_24 CrossRefGoogle Scholar
  21. 21.
    Graham, M., Kennedy, J.: A survey of multiple tree visualisation. Inf. Visual. 9(4), 235–252 (2010)CrossRefGoogle Scholar
  22. 22.
    Greilich, M., Burch, M., Diehl, S.: Visualizing the evolution of compound digraphs with TimeArcTrees. Comput. Graph. Forum 28(3), 975–982 (2009)CrossRefGoogle Scholar
  23. 23.
    Groh, G., Hanstein, H., Wörndl, W.: Interactively visualizing dynamic social networks with DySoN. In: Proceedings of the Workshop on Visual Interfaces to the Social and the Semantic Web, VISSW 2009 (2009)Google Scholar
  24. 24.
    Ierusalimschy, R.: Programming in Lua, 2nd edn., San Francisco (2006)Google Scholar
  25. 25.
    Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd IEEE Conference on Visualization 1991, VIS 1991, pp. 284–291. IEEE Press (1991)Google Scholar
  26. 26.
    Knuth, D.E.: Optimum binary search trees. Acta Informatica 1(1), 14–25 (1971)CrossRefzbMATHGoogle Scholar
  27. 27.
    Moen, S.: Drawing dynamic trees. IEEE Softw. 7(4), 21–28 (1990)CrossRefGoogle Scholar
  28. 28.
    Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., Berger-Wolf, T.: Visualizing the evolution of community structures in dynamic social networks. Comput. Graph. Forum 30(3), 1061–1070 (2011)CrossRefGoogle Scholar
  29. 29.
    Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Softw. Eng. 7(2), 223–228 (1981)CrossRefGoogle Scholar
  30. 30.
    Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: Animated 3D visualizations of hierarchical information. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1991, pp. 189–194. ACM Press (1991)Google Scholar
  31. 31.
    Skambath, M.: Algorithmic drawing of evolving trees. Master’s thesis, Institute of Theoretical Computer Science, Universität zu Lübeck, Germany (2016)Google Scholar
  32. 32.
    Skambath, M., Tantau, T.: Offline drawing of dynamic trees: algorithmics and document integration. SVG Version of this document.
  33. 33.
    Stasko, J., Zhang, E.: Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations. In: Proceedings of the IEEE Symposium on Information Vizualization 2000, INFOVIS 2000, pp. 57–65. IEEE Press (2000)Google Scholar
  34. 34.
    Sugiyama, K., Tagawa, S., Toda, M.: Effective representations of hierarchical structures. Technical report 8, International Institute for Advanced Study of Social Information Science, Fujitsu (1979)Google Scholar
  35. 35.
    Sweet, R.E.: Empirical estimates of program entropy. Report Stan-CS-78-698, Department of Computer Science, Stanford University, Stanford, CA, USA (1978)Google Scholar
  36. 36.
    Tantau, T.: Graph drawing in TikZ. J. Graph Algorithms Appl. 17(4), 495–513 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tantau, T.: The TikZ and pgf packages, manual for version 3.0.0 (2015).
  38. 38.
    Walker II, J.Q.: A node-positioning algorithm for general trees. Softw.: Pract. Exp. 20(7), 685–705 (1990)Google Scholar
  39. 39.
    Ware, C., Bobrow, R.: Motion to support rapid interactive queries on node-link diagrams. ACM Trans. Appl. Percept. 1(1), 3–18 (2004)CrossRefGoogle Scholar
  40. 40.
    Wetherell, C., Shannon, A.: Tidy drawings of trees. IEEE Trans. Softw. Eng. 5(5), 514–520 (1979)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceKiel UniversityKielGermany
  2. 2.Institute of Theoretical Computer ScienceUniversität Zu LübeckLübeckGermany

Personalised recommendations