Advertisement

Evaluation of Two Interaction Techniques for Visualization of Dynamic Graphs

  • Paolo Federico
  • Silvia Miksch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

Several techniques for visualization of dynamic graphs are based on different spatial arrangements of a temporal sequence of node-link diagrams. Many studies in the literature have investigated the importance of maintaining the user’s mental map across this temporal sequence, but usually each layout is considered as a static graph drawing and the effect of user interaction is disregarded. We conducted a task-based controlled experiment to assess the effectiveness of two basic interaction techniques: the adjustment of the layout stability and the highlighting of adjacent nodes and edges. We found that generally both interaction techniques increase accuracy, sometimes at the cost of longer completion times, and that the highlighting outclasses the stability adjustment for many tasks except the most complex ones.

Keywords

Network visualization Dynamic graphs Interaction Evaluation User-study Time-oriented data 

Notes

Acknowledgements

The authors wish to thank the anonymous study subjects for their participation, as well as Theresia Gschwandtner, Simone Kriglstein, and Margit Pohl for their feedback on the manuscript.

This work was partially supported by the Austrian Research Promotion Agency (FFG), project Expand, grant 835937.

References

  1. 1.
    Ahn, J.W., Plaisant, C., Shneiderman, B.: A task taxonomy for network evolution analysis. IEEE Trans. Visual. Comput. Graph. 20(3), 365–376 (2014)CrossRefGoogle Scholar
  2. 2.
    Aigner, W., Hoffmann, S., Rind, A.: EvalBench: a software library for visualization evaluation. Comput. Graph. Forum 32(3pt1), 41–50 (2013)CrossRefGoogle Scholar
  3. 3.
    Archambault, D., Abello, J., Kennedy, J., Kobourov, S., Ma, K.L., Miksch, S., Muelder, C., Telea, A.: Temporal multivariate networks. In: Kerren et al. [26], pp. 151–174Google Scholar
  4. 4.
    Archambault, D., Purchase, H., Pinaud, B.: Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Trans. Visual. Comput. Graph. 17(4), 539–552 (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Archambault, D., Purchase, H.C.: The mental map and memorability in dynamic graphs. In: Proceedings of the Pacific Visualization Symposium, PacificVis 2012, pp. 89–96. IEEE, Washington, DC (2012)Google Scholar
  6. 6.
    Archambault, D., Purchase, H.C.: The map in the mental map: experimental results in dynamic graph drawing. Int. J. Hum.-Comput. Studies 71(11), 1044–1055 (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Archambault, D., Purchase, H.C.: On the application of experimental results in dynamic graph drawing. In: Proceedings of the 1st International Workshop on Graph Visualization in Practice, GViP 2014, vol. 1244, pp. 73–77. CEUR-WS (2014)Google Scholar
  8. 8.
    Bach, B., Pietriga, E., Fekete, J.D.: GraphDiaries: animated transitions and temporal navigation for dynamic networks. IEEE Trans. Visual. Comput. Graph. 20(5), 740–754 (2014)CrossRefGoogle Scholar
  9. 9.
    Baldonado, M.Q.W., Woodruff, A., Kuchinsky, A.: Guidelines for using multiple views in information visualization. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI 2000, pp. 110–119. ACM, New York (2000)Google Scholar
  10. 10.
    Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing dynamic graphs. In: Borgo, R., Maciejewski, R., Viola, I. (eds.) EuroVis - STAR, pp. 83–103. The Eurographics Association (2014)Google Scholar
  11. 11.
    Becker, R.A., Cleveland, W.S.: Brushing scatterplots. Technometrics 29(2), 127–142 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bennett, C., Ryall, J., Spalteholz, L., Gooch, A.: The aesthetics of graph visualization. In: Cunningham, D.W., Meyer, G., Neumann, L. (eds.) Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association (2007)Google Scholar
  13. 13.
    Boyandin, I., Bertini, E., Lalanne, D.: A qualitative study on the exploration of temporal changes in flow maps with animation and small-multiples. Comput. Graph. Forum 31(3pt2), 1005–1014 (2012)CrossRefGoogle Scholar
  14. 14.
    Brandes, U., Mader, M.: A quantitative comparison of stress-minimization approaches for offline dynamic graph drawing. In: Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-25878-7_11 CrossRefGoogle Scholar
  15. 15.
    Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)Google Scholar
  16. 16.
    Coleman, M.K., Parker, D.S.: Aesthetics-based graph layout for human consumption. Softw.: Pract. Exp. 26(12), 1415–1438 (1996)Google Scholar
  17. 17.
    Farrugia, M., Quigley, A.: Effective temporal graph layout: a comparative study of animation versus static display methods. Inf. Visual. 10(1), 47–64 (2011)Google Scholar
  18. 18.
    Federico, P., Aigner, W., Miksch, S., Windhager, F., Smuc, M.: Vertigo zoom: combining relational and temporal perspectives on dynamic networks. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI 2012, pp. 437–440. ACM, New York (2012)Google Scholar
  19. 19.
    Federico, P., Aigner, W., Miksch, S., Windhager, F., Zenk, L.: A visual analytics approach to dynamic social networks. In: Proceedings of the International Conference on Knowledge Management and Knowledge Technologies, i-KNOW 2011, pp. 47:1–47:8. ACM, New York (2011)Google Scholar
  20. 20.
    Ghani, S., Elmqvist, N., Yi, J.S.: Perception of animated node-link diagrams for dynamic graphs. Comput. Graph. Forum 31(3pt3), 1205–1214 (2012)CrossRefGoogle Scholar
  21. 21.
    Heer, J., Boyd, D.: Vizster: visualizing online social networks. In: IEEE Symposium on Information Visualization, INFOVIS 2005, pp. 32–39, October 2005Google Scholar
  22. 22.
    Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2005, pp. 421–430. ACM, New York (2005)Google Scholar
  23. 23.
    Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: a survey. IEEE Trans. Visual. Comput. Graph. 6(1), 24–43 (2000)CrossRefGoogle Scholar
  24. 24.
    Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Visual. Comput. Graphics 8(1), 1–8 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kerracher, N., Kennedy, J., Chalmers, K.: The design space of temporal graph visualisation. In: Elmqvist, N., Hlawitschka, M., Kennedy, J. (eds.) EuroVis - Short Papers, pp. 7–11. The Eurographics Association (2014)Google Scholar
  26. 26.
    Kerren, A., Purchase, H.C., Ward, M.O. (eds.): Multivariate Network Visualization. LNCS, vol. 8380. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Lam, H.: A framework of interaction costs in information visualization. IEEE Trans. Visual. Comput. Graph. 14(6), 1149–1156 (2008)CrossRefGoogle Scholar
  28. 28.
    Lee, B., Plaisant, C., Parr, C.S., Fekete, J.D., Henry, N.: Task taxonomy for graph visualization. In: Proceedings of the AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods for Information Visualization, BELIV 2006, pp. 1–5. ACM, New York (2006)Google Scholar
  29. 29.
    McGuffin, M., Jurisica, I.: Interaction techniques for selecting and manipulating subgraphs in network visualizations. IEEE Trans. Visual. Comput. Graph. 15(6), 937–944 (2009)CrossRefGoogle Scholar
  30. 30.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6(2), 183–210 (1995)CrossRefGoogle Scholar
  31. 31.
    Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.D.: Topology-aware navigation in large networks. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 2319–2328. ACM, New York (2009)Google Scholar
  32. 32.
    Pike, W.A., Stasko, J., Chang, R., O’Connell, T.A.: The science of interaction. Inf. Visual. 8(4), 263–274 (2009)CrossRefGoogle Scholar
  33. 33.
    Pretorius, A., Purchase, H., Stasko, J.: Tasks for multivariate network analysis. In: Kerren et al. [26], pp. 77–95Google Scholar
  34. 34.
    Purchase, H.C., Hoggan, E., Görg, C.: How important is the “mental map”? – an empirical investigation of a dynamic graph layout algorithm. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70904-6_19 CrossRefGoogle Scholar
  35. 35.
    Purchase, H.C., Samra, A.: Extremes are better: investigating mental map preservation in dynamic graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87730-1_9 CrossRefGoogle Scholar
  36. 36.
    Rey, G.D., Diehl, S.: Controlling presentation speed, labels, and tooltips in interactive animations. J. Media Psychol.: Theor. Methods Appl. 22(4), 160 (2010)CrossRefGoogle Scholar
  37. 37.
    Saffrey, P., Purchase, H.: The mental map versus static aesthetic compromise in dynamic graphs: a user study. In: Proceedings of the Conference on Australasian User Interface, AUIC 2008, pp. 85–93. Australian Comp. Soc. (2008)Google Scholar
  38. 38.
    Smuc, M., Federico, P., Windhager, F., Aigner, W., Zenk, L., Miksch, S.: How do you connect moving dots? Insights from user studies on dynamic network visualizations. In: Huang, W. (ed.) Handbook of Human Centric Visualization, pp. 623–650. Springer, New York (2014)CrossRefGoogle Scholar
  39. 39.
    Spence, R.: Information Visualization: Design for Interaction. Addison Wesley, Harlow, New York (2007)Google Scholar
  40. 40.
    Van De Bunt, G.G., Van Duijn, M.A.J., Snijders, T.A.B.: Friendship networks through time: an actor-oriented dynamic statistical network model. Comput. Math. Organ. Theory 5(2), 167–192 (1999)CrossRefzbMATHGoogle Scholar
  41. 41.
    von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J., Fekete, J.D., Fellner, D.: Visual analysis of large graphs: state-of-the-art and future research challenges. Comput. Graph. Forum 30(6), 1719–1749 (2011)CrossRefGoogle Scholar
  42. 42.
    Ware, C.: Information Visualization: Perception for Design. Morgan Kaufman, San Francisco (2004)Google Scholar
  43. 43.
    Ware, C., Bobrow, R.: Supporting visual queries on medium-sized nodelink diagrams. Inf. Visual. 4(1), 49–58 (2005)CrossRefGoogle Scholar
  44. 44.
    Wybrow, M., Elmqvist, N., Fekete, J.D., von Landesberger, T., van Wijk, J., Zimmer, B.: Interaction in the visualization of multivariate networks. In: Kerren et al. [26], pp. 97–125Google Scholar
  45. 45.
    Yi, J.S., ah Kang, Y., Stasko, Y., Jacko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Visual. Comput. Graph. 13(6), 1224–1231 (2007)CrossRefGoogle Scholar
  46. 46.
    Zaman, L., Kalra, A., Stuerzlinger, W.: The effect of animation, dual view, difference layers, and relative re-layout in hierarchical diagram differencing. In: Proceedings of the Conference Graphics Interface, GI 2011, pp. 183–190. Canadian Human-Computer Comm. Soc. (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute of Software Technology and Interactive Systems, TU WienViennaAustria

Personalised recommendations