Beyond Level Planarity

  • Patrizio Angelini
  • Giordano Da Lozzo
  • Giuseppe Di Battista
  • Fabrizio Frati
  • Maurizio Patrignani
  • Ignaz Rutter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

In this paper we settle the computational complexity of two open problems related to the extension of the notion of level planarity to surfaces different from the plane. Namely, we show that the problems of testing the existence of a level embedding of a level graph on the surface of the rolling cylinder or on the surface of the torus, respectively known by the name of Cyclic Level Planarity and Torus Level Planarity, are polynomial-time solvable.

Moreover, we show a complexity dichotomy for testing the Simultaneous Level Planarity of a set of level graphs, with respect to both the number of level graphs and the number of levels.

References

  1. 1.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Beyond level planarity. CoRR abs/1510.08274v3 (2015). http://arxiv.org/abs/1510.08274v3
  2. 2.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance of being proper: (in clustered-level planarity and T-level planarity). Theor. Comput. Sci. 571, 1–9 (2015). http://dx.doi.org/10.1016/j.tcs.2014.12.019 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A.: Classification of planar upward embedding. In: Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 415–426. Springer, Heidelberg (2012). doi:10.1007/978-3-642-25878-7_39 CrossRefGoogle Scholar
  4. 4.
    Bachmaier, C., Brandenburg, F., Forster, M.: Radial level planarity testing and embedding in linear time. J. Graph Algorithms Appl. 9(1), 53–97 (2005). http://jgaa.info/accepted/2005/BachmaierBrandenburgForster2005.9.1.pdf MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bachmaier, C., Brunner, W.: Linear time planarity testing and embedding of strongly connected cyclic level graphs. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 136–147. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87744-8_12 CrossRefGoogle Scholar
  6. 6.
    Bachmaier, C., Brunner, W., König, C.: Cyclic level planarity testing and embedding. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 50–61. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77537-9_8 CrossRefGoogle Scholar
  7. 7.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embeddings of planar graphs (Chap. 11). In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Discrete Mathematics and Its Applications, pp. 349–382. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  8. 8.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2), 16 (2016). http://doi.acm.org/10.1145/2738054 MathSciNetGoogle Scholar
  9. 9.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976). http://dx.doi.org/10.1016/S0022-0000(76)80045–1 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Brandenburg, F.: Upward planar drawings on the standing and the rolling cylinders. Comput. Geom. 47(1), 25–41 (2014). http://dx.doi.org/10.1016/j.comgeo.2013.08.003 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007). http://dx.doi.org/10.1016/j.comgeo.2006.05.006 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Trans. Syst. Man Cybern. 18(6), 1035–1046 (1988). http://dx.doi.org/10.1109/21.23105 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: On the characterization of level planar trees by minimal patterns. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 69–80. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11805-0_9 CrossRefGoogle Scholar
  14. 14.
    Forster, M., Bachmaier, C.: Clustered level planarity. In: Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 218–228. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24618-3_18 CrossRefGoogle Scholar
  15. 15.
    Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone drawings, and level-planarity. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 263–287. Springer, New York (2013). http://dx.doi.org/10.1007/978-1-4614-0110-0_14 CrossRefGoogle Scholar
  16. 16.
    Haeupler, B., Raju Jampani, K., Lubiw, A.: Testing simultaneous planarity when the common graph is 2-connected. J. Graph Algorithms Appl. 17(3), 147–171 (2013). http://dx.doi.org/10.7155/jgaa.00289 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Healy, P., Kuusik, A., Leipert, S.: A characterization of level planar graphs. Discrete Math. 280(1–3), 51–63 (2004). http://dx.doi.org/10.1016/j.disc.2003.02.001 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Heath, L.S., Pemmaraju, S.V.: Recognizing leveled-planar dags in linear time. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 300–311. Springer, Heidelberg (1996). doi:10.1007/BFb0021813 CrossRefGoogle Scholar
  19. 19.
    Hsu, W., McConnell, R.M.: PQ trees, PC trees, and planar graphs. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applications. Chapman and Hall/CRC, Boca Raton (2004). http://dx.doi.org/10.1201/9781420035179 Google Scholar
  20. 20.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1998). doi:10.1007/3-540-37623-2_17 CrossRefGoogle Scholar
  21. 21.
    Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Randerath, B., Speckenmeyer, E., Boros, E., Hammer, P.L., Kogan, A., Makino, K., Simeone, B., Cepek, O.: A satisfiability formulation of problems on level graphs. Electron. Notes Discrete Math. 9, 269–277 (2001). http://dx.doi.org/10.1016/S1571-0653(04)00327–0 CrossRefMATHGoogle Scholar
  23. 23.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981). http://dx.doi.org/10.1109/TSMC.1981.4308636 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wotzlaw, A., Speckenmeyer, E., Porschen, S.: Generalized k-ary tanglegrams on level graphs: a satisfiability-based approach and its evaluation. Discrete Appl. Math. 160(16–17), 2349–2363 (2012). http://dx.doi.org/10.1016/j.dam.2012.05.028 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Giordano Da Lozzo
    • 2
  • Giuseppe Di Battista
    • 2
  • Fabrizio Frati
    • 2
  • Maurizio Patrignani
    • 2
  • Ignaz Rutter
    • 3
  1. 1.Tübingen UniversityTübingenGermany
  2. 2.Roma Tre UniversityRomeItaly
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations