Advertisement

1-Bend RAC Drawings of 1-Planar Graphs

  • Walter Didimo
  • Giuseppe Liotta
  • Saeed Mehrabi
  • Fabrizio Montecchiani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

A graph is 1-planar if it has a drawing where each edge is crossed at most once. A drawing is RAC (Right Angle Crossing) if the edges cross only at right angles. The relationships between 1-planar graphs and RAC drawings have been partially studied in the literature. It is known that there are both 1-planar graphs that are not straight-line RAC drawable and graphs that have a straight-line RAC drawing but that are not 1-planar [22]. Also, straight-line RAC drawings always exist for IC-planar graphs [9], a subclass of 1-planar graphs. One of the main questions still open is whether every 1-planar graph has a RAC drawing with at most one bend per edge. We positively answer this question.

References

  1. 1.
    Ackerman, E.: A note on 1-planar graphs. Discrete Appl. Math. 175, 104–108 (2014). http://dx.doi.org/10.1016/j.dam.2014.05.025
  2. 2.
    Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of 3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 83–94. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-03841-4_8 CrossRefGoogle Scholar
  3. 3.
    Angelini, P., Cittadini, L., Didimo, W., Frati, F., Battista, G.D., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. J. Graph Algorithms Appl. 15(1), 53–78 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of graphs. Comput. J. 56(7), 887–900 (2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that admit right angle crossing drawings. Comput. Geom. 45(4), 169–177 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing of planar graphs with right-angle crossings and few bends. J. Graph Algorithms Appl. 20(1), 133–158 (2016). http://dx.doi.org/10.7155/jgaa.00388
  7. 7.
    Biedl, T.C., Liotta, G., Montecchiani, F.: On visibility representations of non-planar graphs. In: Fekete, S.P., Lubiw, A. (eds.) SoCG 2016. LIPIcs, vol. 51, pp. 19:1–19:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). http://www.dagstuhl.de/dagpub/978-3-95977-009-5
  8. 8.
    Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3), 421–438 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636, 1–16 (2016). http://dx.doi.org/10.1016/j.tcs.2016.04.026
  10. 10.
    Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings of planar graphs. In: Progress in Graph Theory, pp. 153–173 (1984)Google Scholar
  11. 11.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  12. 12.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing drawings. Algorithmica 68(4), 954–997 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Di Giacomo, E., Didimo, W., Grilli, L., Liotta, G., Romeo, S.A.: Heuristics for the maximum 2-layer RAC subgraph problem. Comput. J. 58(5), 1085–1098 (2015)CrossRefzbMATHGoogle Scholar
  15. 15.
    Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Area requirement of graph drawings with few crossings per edge. Comput. Geom. 46(8), 909–916 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: 1-Bend RAC Drawings of 1-Planar Graphs. ArXiv e-prints abs/1608.08418 (2016). http://arxiv.org/abs/1608.08418v1
  17. 17.
    Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett. 113(7), 236–240 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Didimo, W., Liotta, G.: The crossing angle resolution in graph drawing. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory. Springer, New York (2012)Google Scholar
  20. 20.
    Didimo, W., Liotta, G., Romeo, S.A.: Topology-driven force-directed algorithms. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 165–176. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18469-7_15 CrossRefGoogle Scholar
  21. 21.
    Didimo, W., Liotta, G., Romeo, S.A.: A graph drawing application to web site traffic analysis. J. Graph Algorithms Appl. 15(2), 229–251 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl. Math. 161(7–8), 961–969 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32241-9_29 CrossRefGoogle Scholar
  25. 25.
    Huang, W.: Using eye tracking to investigate graph layout effects. In: APVIS 2007, pp. 97–100 (2007)Google Scholar
  26. 26.
    Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014)CrossRefGoogle Scholar
  27. 27.
    Huang, W., Eades, P., Hong, S., Lin, C.: Improving force-directed graph drawings by making compromises between aesthetics. In: VL/HCC, pp. 176–183. IEEE (2010)Google Scholar
  28. 28.
    Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: PacificVis 2008, pp. 41–46. IEEE (2008)Google Scholar
  29. 29.
    Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72(1), 30–71 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nguyen, Q., Eades, P., Hong, S.-H., Huang, W.: Large crossing angles in circular layouts. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 397–399. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18469-7_40 CrossRefGoogle Scholar
  31. 31.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997). doi: 10.1007/3-540-63938-1_67 CrossRefGoogle Scholar
  33. 33.
    Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000)CrossRefGoogle Scholar
  34. 34.
    Purchase, H.C., Carrington, D.A., Allder, J.: Empirical evaluation of aesthetics-based graph layout. Empirical Softw. Eng. 7(3), 233–255 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Semin. Univ. Hambg. 29(1–2), 107–117 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math. 24(4), 1527–1540 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Saeed Mehrabi
    • 2
  • Fabrizio Montecchiani
    • 1
  1. 1.Dipartimento di IngegneriaUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations