Advertisement

On the Size of Planarly Connected Crossing Graphs

  • Eyal Ackerman
  • Balázs KeszeghEmail author
  • Mate Vizer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

We prove that if an n-vertex graph G can be drawn in the plane such that each pair of crossing edges is independent and there is a crossing-free edge that connects their endpoints, then G has O(n) edges. Graphs that admit such drawings are related to quasi-planar graphs and to maximal 1-planar and fan-planar graphs.

Keywords

Planar graphs Crossing edges Crossing-free edge Fan-planar graphs 1-planar graphs 

Notes

Acknowledgments

We thank Géza Tóth for his permission to include his construction for a lower bound on the size of a PCC graph in this paper. We also thank an anonymous referee for pointing out an error in an earlier version of this paper.

Most of this work was done during a visit of the first author to the Rényi Institute that was partially supported by the National Research, Development and Innovation Office – NKFIH under the grant PD 108406 and by the ERC Advanced Research Grant no. 267165 (DISCONV). The second author was supported by the National Research, Development and Innovation Office – NKFIH under the grant PD 108406 and K 116769 and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The third author was supported by Development and Innovation Office – NKFIH under the grant SNN 116095.

References

  1. 1.
    Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discrete Computat. Geom. 41(3), 365–375 (2009). http://dx.doi.org/10.1007/s00454-009-9143-9 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ackerman, E., Fox, J., Pach, J., Suk, A.: On grids in topological graphs. Comput. Geom. 47(7), 710–723 (2014). http://dx.doi.org/10.1016/j.comgeo.2014.02.003 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ackerman, E., Fulek, R., Tóth, C.D.: Graphs that admit polyline drawings with few crossing angles. SIAM J. Discrete Math. 26(1), 305–320 (2012). http://dx.doi.org/10.1137/100819564 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). http://dx.doi.org/10.1016/j.jcta.2006.08.002 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997). http://dx.doi.org/10.1007/BF01196127 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brass, P., Moser, W.O.J., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)zbMATHGoogle Scholar
  7. 7.
    Capoyleas, V., Pach, J.: A Turán-type theorem on chords of a convex polygon. J. Comb. Theory Ser. B 56(1), 9–15 (1992). http://dx.doi.org/10.1016/0095-8956(92)90003-G MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chojnacki, C.: Über wesentlich unplättbare Kurven im dreidimensionalen Raume. Fundamenta Mathematicae 23(1), 135–142 (1934)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fox, J., Pach, J.: Coloring \({K}_k\)-free intersection graphs of geometric objects in the plane. Eur. J. Comb. 33(5), 853–866 (2012). http://dx.doi.org/10.1016/j.ejc.2011.09.021 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fox, J., Pach, J.: Applications of a new separator theorem for string graphs. Comb. Probab. Comput. 23(1), 66–74 (2014). http://dx.doi.org/10.1017/S0963548313000412 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR abs/1403.6184 (2014). http://arxiv.org/abs/1403.6184
  12. 12.
    Pach, J.: Notes on geometric graph theory. In: Goodman, J., Pollack, R., Steiger, W. (eds.) Discrete and Computational Geometry: Papers from DIMACS special year, DIMACS series, vol. 6, pp. 273–285. AMS, Providence (1991)Google Scholar
  13. 13.
    Pach, J., Radoičić, R., Tóth, G.: Relaxing planarity for topological graphs. In: Gőri, E., Katona, G.O., Lovász, L. (eds.) More Graphs, Sets and Numbers, Bolyai Society Mathematical Studies, vol. 15, pp. 285–300. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997). http://dx.doi.org/10.1007/BF01215922 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Comb. Theory Ser. B 97(4), 489–500 (2007). http://dx.doi.org/10.1016/j.jctb.2006.08.001 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Suk, A., Walczak, B.: New bounds on the maximum number of edges in k-quasi-planar graphs. Comput. Geom. 50, 24–33 (2015). http://dx.doi.org/10.1016/j.comgeo.2015.06.001 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tóth, G.: Private communication (2015)Google Scholar
  18. 18.
    Tutte, W.: Toward a theory of crossing numbers. J. Comb. Theory 8(1), 45–53 (1970). http://www.sciencedirect.com/science/article/pii/S0021980070800072 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Physics, and Computer ScienceUniversity of Haifa at OranimTivonIsrael
  2. 2.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations